Back to Search Start Over

Universal semiclassical equations based on the quantum metric for a two-band system

Authors :
C. Leblanc
Dmitry Solnyshkov
Guillaume Malpuech
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016)
Source :
Phys.Rev.B, Phys.Rev.B, 2021, 104 (13), pp.134312. ⟨10.1103/PhysRevB.104.134312⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We derive semiclassical equations of motion for an accelerated wave packet in a two-band system. We show that these equations can be formulated in terms of the static band geometry described by the quantum metric. We consider the specific cases of the Rashba Hamiltonian with and without a Zeeman term. The semiclassical trajectories are in full agreement with the ones found by solving the Schrödinger equation. This formalism successfully describes the adiabatic limit and the anomalous Hall effect traditionally attributed to Berry curvature. It also describes the opposite limit of coherent band superposition, giving rise to a spatially oscillating Zitterbewegung motion, and all intermediate cases. At k=0, such a wave packet exhibits a circular trajectory in real space, with its radius given by the square root of the quantum metric. This quantity appears as a universal length scale, providing a geometrical origin of the Compton wavelength. The quantum metric semiclassical approach could be extended to an arbitrary number of bands.

Details

Language :
English
Database :
OpenAIRE
Journal :
Phys.Rev.B, Phys.Rev.B, 2021, 104 (13), pp.134312. ⟨10.1103/PhysRevB.104.134312⟩
Accession number :
edsair.doi.dedup.....c333407de0a950809569b68f1221afd5
Full Text :
https://doi.org/10.1103/PhysRevB.104.134312⟩