Back to Search Start Over

Correlation of Polyamine and Growth Responses to N 1,N 11-Diethylnorspermine in Primary Fetal Fibroblasts Derived from Transgenic Mice Overexpressing Spermidine/SpermineN 1-Acetyltransferase

Authors :
Slavoljub Vujcic
Debora L. Kramer
Anne Karppinen
Maria Halmekytö
Ryan Hines
Mikko Uusi-Oukari
Carl W. Porter
Leena Alhonen
Veli-Pekka Korhonen
Juhani Jänne
Source :
Journal of Biological Chemistry. 273:1964-1969
Publication Year :
1998
Publisher :
Elsevier BV, 1998.

Abstract

A recently generated transgenic mouse line having activated polyamine catabolism due to systemic overexpression of spermidine/spermine N1-acetyltransferase (SSAT) was used to isolate primary fetal fibroblasts as a means to further elucidate the cellular consequences of activated polyamine catabolism. Basal levels of SSAT activity and steady-state mRNA in the transgenic fibroblasts were about approximately 20- and approximately 40-fold higher than in non-transgenic fibroblasts. Consistent with activated polyamine catabolism, there was an overaccumulation of putrescine and N1-acetylspermidine and a decrease in spermidine and spermine pools. Treatment with the polyamine analogue N1,N11-diethylnorspermine (DENSPM) increased SSAT activity in the transgenic fibroblasts approximately 380-fold, whereas mRNA increased only approximately 3-fold, indicating post-mRNA regulation. SSAT activity in the nontransgenic fibroblasts increased approximately 200-fold. By Western blot, enzyme protein was found to increase approximately 46 times higher in the treated transgenic fibroblasts than non-transgenic fibroblasts: a value comparable to 36-fold differential in enzyme activity. With DENSPM treatment, spermidine pools were more rapidly depleted in the transgenic fibroblasts than in nontransgenic fibroblasts. Similarly, transgenic fibroblasts were much more sensitive to DENSPM-induced growth inhibition. This was not diminished by co-treatment with an inhibitor of polyamine oxidase, suggesting that growth inhibition was due to polyamine depletion per se as opposed to oxidative stress. Since the two fibroblasts were genetically identical except for the transgene, the various metabolic and growth response differences are directly attributable to overexpression of SSAT.

Details

ISSN :
00219258
Volume :
273
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....c323b01ad9866c2b7237438ed6f2882b
Full Text :
https://doi.org/10.1074/jbc.273.4.1964