Back to Search Start Over

Pillared graphite anodes for reversible sodiation

Authors :
Zhifei Li
Wei Xu
Michael M. Lerner
Yicong Chen
Xiulei Ji
Hanyang Zhang
Source :
Nanotechnology. 29:325402
Publication Year :
2018
Publisher :
IOP Publishing, 2018.

Abstract

There has been a major effort recently to develop new rechargeable sodium-ion electrodes. In lithium ion batteries, LiC6 forms from graphite and desolvated Li cations during the first charge. With sodium ions, graphite only shows a significant capacity when Na+ intercalates as a solvated complex, resulting in ternary graphite intercalation compounds (GICs). Although this chemistry has been shown to be highly reversible and to support high rates in small test cells, these GICs can require >250% volume expansion and contraction during cycling. Here we demonstrate the first example of GICs that reversibly sodiate/desodiate without any significant volume change. These pillared GICs are obtained by electrochemical reduction of graphite in an ether/amine co-solvent electrolyte. The initial gallery expansion, 0.36 nm, is less than half of that in diglyme-based systems, and shows a similar capacity. Thermal analyses suggest the pillaring phenomenon arises from stronger co-intercalate interactions in the GIC galleries.

Details

ISSN :
13616528 and 09574484
Volume :
29
Database :
OpenAIRE
Journal :
Nanotechnology
Accession number :
edsair.doi.dedup.....c30e471fb51e2bf6dc3bd9da76eb53de