Back to Search Start Over

Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization

Authors :
Larbi Boubchir
Luigi Lancieri
France Télécom Recherche & Développement (FT R&D)
France Télécom
Equipe Image - Laboratoire GREYC - UMR6072
Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)
Source :
Knowledge-Based Systems, Knowledge-Based Systems, Elsevier, 2007, 20 (3), pp.266-276. ⟨10.1016/j.knosys.2006.05.018⟩
Publication Year :
2007
Publisher :
Elsevier BV, 2007.

Abstract

International audience; This article proposes an automatic characterization method by comparing unknown images with examples more or less known. Our approach allows to use uncertain examples but easy to obtain (e.g. by automatic retrieval on the Internet). The use of fuzzy logic and adaptive clustering makes it possible to reduce automatically the noise from this database by preserving only the examples having a strong level of redundancy in the dominant shapes. To validate this method, we compared our artificial process of recognition with the estimation of human operators. The tests show that the automatic process gives an average accuracy of the characterization near to 95%.

Details

ISSN :
09507051 and 18727409
Volume :
20
Database :
OpenAIRE
Journal :
Knowledge-Based Systems
Accession number :
edsair.doi.dedup.....c2f6990ac0f81aa6233527bc9bcff2ad