Back to Search Start Over

DeepRoute: Herding Elephant and Mice Flows with Reinforcement Learning

Authors :
Bashir Mohammed
Mariam Kiran
Nandini Krishnaswamy
Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
Scientific Data Management (ZENITH)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Selma Boumerdassi
Éric Renault
Paul Mühlethaler
TC 6
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Source :
Lecture Notes in Computer Science, MLN 2019-2nd International Conference on Machine Learning for Networking, MLN 2019-2nd International Conference on Machine Learning for Networking, Dec 2019, Paris, France. pp.296-314, ⟨10.1007/978-3-030-45778-5_20⟩, Machine Learning for Networking ISBN: 9783030457778, MLN
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Wide area networks are built to have enough resilience and flexibility, such as offering many paths between multiple pairs of end-hosts. To prevent congestion, current practices involve numerous tweaking of routing tables to optimize path computation, such as flow diversion to alternate paths or load balancing. However, this process is slow, costly and require difficult online decision-making to learn appropriate settings, such as flow arrival rate, workload, and current network environment. Inspired by recent advances in AI to manage resources, we present DeepRoute, a model-less reinforcement learning approach that translates the path computation problem to a learning problem. Learning from the network environment, DeepRoute learns strategies to manage arriving elephant and mice flows to improve the average path utilization in the network. Comparing to other strategies such as prioritizing certain flows and random decisions, DeepRoute is shown to improve average network path utilization to 30% and potentially reduce possible congestion across the whole network. This paper presents results in simulation and also how DeepRoute can be demonstrated by a Mininet implementation.

Details

Language :
English
ISBN :
978-3-030-45777-8
ISBNs :
9783030457778
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science, MLN 2019-2nd International Conference on Machine Learning for Networking, MLN 2019-2nd International Conference on Machine Learning for Networking, Dec 2019, Paris, France. pp.296-314, ⟨10.1007/978-3-030-45778-5_20⟩, Machine Learning for Networking ISBN: 9783030457778, MLN
Accession number :
edsair.doi.dedup.....c2e8e074e7404bb4049ca752761848ed
Full Text :
https://doi.org/10.1007/978-3-030-45778-5_20⟩