Back to Search Start Over

Phenotyping of Fecal Microbiota of Winnie, a Rodent Model of Spontaneous Chronic Colitis, Reveals Specific Metabolic, Genotoxic, and Pro-inflammatory Properties

Authors :
Adelfia Talà
Flora Guerra
Silvia Caterina Resta
Matteo Calcagnile
Amilcare Barca
Salvatore Maurizio Tredici
Maria Dolores De Donno
Mirco Vacca
Marina Liso
Marcello Chieppa
Maria De Angelis
Tiziano Verri
Maria Giuseppina Bozzetti
Cecilia Bucci
Pietro Alifano
Tala', Adelfia
Guerra, Flora
Resta, SILVIA CATERINA
Calcagnile, Matteo
Barca, Amilcare
Tredici, Salvatore Maurizio
DE DONNO, MARIA DOLORES
Vacca, Mirco
Liso, Marina
Chieppa, Marcello
De Angelis, Maria
Verri, Tiziano
Bozzetti, Maria Giuseppina
Bucci, Cecilia
Alifano, Pietro
Source :
Inflammation. 45(6)
Publication Year :
2022

Abstract

Abstract Winnie, a mouse carrying a missense mutation in the MUC2 mucin gene, is a valuable model for inflammatory bowel disease (IBD) with signs and symptoms that have multiple similarities with those observed in patients with ulcerative colitis. MUC2 mucin is present in Winnie, but is not firmly compacted in a tight inner layer. Indeed, these mice develop chronic intestinal inflammation due to the primary epithelial defect with signs of mucosal damage, including thickening of muscle and mucosal layers, goblet cell loss, increased intestinal permeability, enhanced susceptibility to luminal inflammation-inducing toxins, and alteration of innervation in the distal colon. In this study, we show that the intestinal environment of the Winnie mouse, genetically determined by MUC2 mutation, selects an intestinal microbial community characterized by specific pro-inflammatory, genotoxic, and metabolic features that could imply a direct involvement in the pathogenesis of chronic intestinal inflammation. We report results obtained by using a variety of in vitro approaches for fecal microbiota functional characterization. These approaches include Caco-2 cell cultures and Caco-2/THP-1 cell co-culture models for evaluation of geno-cytotoxic and pro-inflammatory properties using a panel of 43 marker RNAs assayed by RT-qPCR, and cell-based phenotypic testing for metabolic profiling of the intestinal microbial communities by Biolog EcoPlates. While adding a further step towards understanding the etiopathogenetic mechanisms underlying IBD, the results of this study provide a reliable method for phenotyping gut microbial communities, which can complement their structural characterization by providing novel functional information.

Details

ISSN :
15732576
Volume :
45
Issue :
6
Database :
OpenAIRE
Journal :
Inflammation
Accession number :
edsair.doi.dedup.....c2e188cdfee4b6724d47e40e39ab1866