Back to Search Start Over

Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus

Authors :
Masanori Taira
Shuji Mizumoto
Yusuke Mii
Makoto Matsuyama
Shinji Takada
Takayoshi Yamamoto
Shuhei Yamada
Ritsuko Takada
Source :
Nature Communications, Vol 8, Iss 1, Pp 1-19 (2017), Nature Communications
Publication Year :
2017
Publisher :
Nature Publishing Group, 2017.

Abstract

Wnt proteins direct embryonic patterning, but the regulatory basis of their distribution and signal reception remain unclear. Here, we show that endogenous Wnt8 protein is distributed in a graded manner in Xenopus embryo and accumulated on the cell surface in a punctate manner in association with “N-sulfo-rich heparan sulfate (HS),” not with “N-acetyl-rich HS”. These two types of HS are differentially clustered by attaching to different glypicans as core proteins. N-sulfo-rich HS is frequently internalized and associated with the signaling vesicle, known as the Frizzled/Wnt/LRP6 signalosome, in the presence of Wnt8. Conversely, N-acetyl-rich HS is rarely internalized and accumulates Frzb, a secreted Wnt antagonist. Upon interaction with Frzb, Wnt8 associates with N-acetyl-rich HS, suggesting that N-acetyl-rich HS supports Frzb-mediated antagonism by sequestering Wnt8 from N-sulfo-rich HS. Thus, these two types of HS clusters may constitute a cellular platform for the distribution and signaling of Wnt8.<br />Wnt proteins mediate embryonic development but how protein localization and patterning is regulated is unclear. Here, the authors show that distinct structures with different heparan sulfate modifications (‘N-sulfo-rich’ and ‘N-acetyl-rich’) regulate cellular localization and signal transduction of Wnt8 in Xenopus.

Details

Language :
English
ISSN :
20411723
Volume :
8
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....c2ad871bc6e20a309d23e18c211cf7ee