Back to Search Start Over

Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinantSaccharomyces cerevisiaestrains at high xylose concentrations

Authors :
Leandro Vieira dos Santos
Gonçalo Amarante Guimarães Pereira
Joao Gabriel Ribeiro Bueno
Thamy Lívia Ribeiro Corrêa
Mateus Bernabe Fiamenghi
Juliana José
Guilherme Borelli
Leandro C. Oliveira
Murilo Carvalho
Brazilian Ctr Res Energy & Mat CNPEM
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
Source :
Web of Science, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, Biotechnology for Biofuels, Biotechnology for Biofuels, Vol 13, Iss 1, Pp 1-20 (2020)
Publication Year :
2020
Publisher :
Bmc, 2020.

Abstract

Made available in DSpace on 2020-12-10T20:10:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-08-14 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Serrapilheira Institute Background The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineeredSaccharomyces cerevisiaestrains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeastS. cerevisiaeis not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. Results Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeastCandida sojaeas a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. Conclusions Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast. Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biorenewable Natl Lab LNBR, BR-13083100 Campinas, SP, Brazil Univ Campinas UNICAMP, Inst Biol, Genet & Mol Biol Grad Program, Campinas, Brazil Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biosci Natl Lab LNBio, BR-13083970 Campinas, SP, Brazil Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil Sao Paulo State Univ, UNESP, Dept Phys, Inst Biosci Humanities & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil Sao Paulo State Univ, UNESP, Dept Phys, Inst Biosci Humanities & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil FAPESP: 2017/08519-6 FAPESP: 2017/05078-9 FAPESP: 2018/00888-5 CNPq: 430291/2018-3 CAPES: 001 Serrapilheira Institute: Serra1708-16205

Details

Language :
English
Database :
OpenAIRE
Journal :
Web of Science, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, Biotechnology for Biofuels, Biotechnology for Biofuels, Vol 13, Iss 1, Pp 1-20 (2020)
Accession number :
edsair.doi.dedup.....c2a91d75763091d50f6488316f52562a