Back to Search Start Over

Effects of Polystyrene Microplastics on Growth and Toxin Production of

Authors :
Aifeng Li
Zhixuan Tang
Chao Liu
Hong Hu
Fanping Meng
Jiangbing Qiu
Source :
Toxins, Toxins, Vol 13, Iss 293, p 293 (2021), Volume 13, Issue 4
Publication Year :
2021

Abstract

Microplastics (MP) widely distributed in aquatic environments have adverse effects on aquatic organisms. Currently, the impact of MP on toxigenic red tide microalgae is poorly understood. In this study, the strain of Alexandriumpacificum ATHK, typically producing paralytic shellfish toxins (PST), was selected as the target. Effects of 1 and 0.1 μm polystyrene MP with three concentration gradients (5 mg L−1, 25 mg L−1 and 100 mg L−1) on the growth, chlorophyll a (Chl a), photosynthetic activity (Fv/Fm) and PST production of ATHK were explored. Results showed that the high concentration (100 mg L−1) of 1 μm and 0.1 μm MP significantly inhibited the growth of ATHK, and the inhibition depended on the size and concentration of MP. Contents of Chl a showed an increase with various degrees after MP exposure in all cases. The photosynthesis indicator Fv/Fm of ATHK was significantly inhibited in the first 11 days, then gradually returned to the level of control group at day 13, and finally was gradually inhibited in the 1 μm MP treatments, and promotion or inhibition to some degree also occurred at different periods after exposure to 0.1 μm MP. Overall, both particle sizes of MP at 5 and 25 mg L−1 had no significant effect on cell toxin quota, and the high concentration 100 mg L−1 significantly promoted the PST biosynthesis on the day 7, 11 and 15. No significant difference occurred in the cell toxin quota and the total toxin content in all treatments at the end of the experiment (day 21). All MP treatments did not change the toxin profiles of ATHK, nor did the relative molar percentage of main PST components. The growth of ATHK, Chl a content, Fv/Fm and toxin production were not affected by MP shading. This is the first report on the effects of MP on the PST-producing microalgae, which will improve the understanding of the adverse impact of MP on the growth and toxin production of A. pacificum.

Details

ISSN :
20726651
Volume :
13
Issue :
4
Database :
OpenAIRE
Journal :
Toxins
Accession number :
edsair.doi.dedup.....c2935c33d94477f0bede49c635d1cae6