Back to Search Start Over

A few extreme events dominate global interannual variability in gross primary production

Authors :
James T. Randerson
Jakob Zscheischler
Anja Rammig
Bernhard Schölkopf
Enrico Tomelleri
Miguel D. Mahecha
Markus Reichstein
Sonia I. Seneviratne
Stefan Harmeling
Jannis von Buttlar
Martin Jung
Sönke Zaehle
Source :
Environmental Research Letters, Zscheischler, J; Mahechal, M D; von Buttlar, J; Harmeling, S; Jung, M; Rammig, A; et al.(2014). A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters. UC Irvine: Department of Earth System Science, UCI. Retrieved from: http://www.escholarship.org/uc/item/6wt4x2ss, Environmental Research Letters, 9 (3), Zscheischler, J; Mahecha, MD; Von Buttlar, J; Harmeling, S; Jung, M; Rammig, A; et al.(2014). A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3). doi: 10.1088/1748-9326/9/3/035001. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/9mr82724
Publication Year :
2014
Publisher :
Bristol : IOP Publishing, 2014.

Abstract

Understanding the impacts of climate extremes on the carbon cycle is important for quantifying the carbon-cycle climate feedback and highly relevant to climate change assessments. Climate extremes and fires can have severe regional effects, but a spatially explicit global impact assessment is still lacking. Here, we directly quantify spatiotemporal contiguous extreme anomalies in four global data sets of gross primary production (GPP) over the last 30 years. We find that positive and negative GPP extremes occurring on 7% of the spatiotemporal domain explain 78% of the global interannual variation in GPP and a significant fraction of variation in the net carbon flux. The largest thousand negative GPP extremes during 1982-2011 (4.3% of the data) account for a decrease in photosynthetic carbon uptake of about 3.5 Pg C yr-1, with most events being attributable to water scarcity. The results imply that it is essential to understand the nature and causes of extremes to understand current and future GPP variability. © 2014 IOP Publishing Ltd.

Details

Language :
English
Database :
OpenAIRE
Journal :
Environmental Research Letters, Zscheischler, J; Mahechal, M D; von Buttlar, J; Harmeling, S; Jung, M; Rammig, A; et al.(2014). A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters. UC Irvine: Department of Earth System Science, UCI. Retrieved from: http://www.escholarship.org/uc/item/6wt4x2ss, Environmental Research Letters, 9 (3), Zscheischler, J; Mahecha, MD; Von Buttlar, J; Harmeling, S; Jung, M; Rammig, A; et al.(2014). A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3). doi: 10.1088/1748-9326/9/3/035001. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/9mr82724
Accession number :
edsair.doi.dedup.....c288e3889a19684b8170bf962b63a730
Full Text :
https://doi.org/10.34657/146