Back to Search Start Over

A non-overlapping optimized Schwarz method for the heat equation with non linear boundary conditions and with applications to de-icing

Authors :
Rémi Chauvin
Philippe Villedieu
Lokman Bennani
Pierre Trontin
ONERA / DMPE, Université de Toulouse [Toulouse]
ONERA-PRES Université de Toulouse
Laboratoire de Détection et de Géophysique (CEA) (LDG)
DAM Île-de-France (DAM/DIF)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
Computers & Mathematics with Applications, Computers & Mathematics with Applications, 2020, 80 (6), pp.1500-1522. ⟨10.1016/j.camwa.2020.07.017⟩, Computers & Mathematics with Applications, Elsevier, 2020, 80 (6), pp.1500-1522. ⟨10.1016/j.camwa.2020.07.017⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; When simulating complex physical phenomena such as aircraft icing or de-icing, several dedicated solvers often need to be strongly coupled. In this work, a non-overlapping Schwarz method is constructed with the unsteady simulation of de-icing as the targetted application. To do so, optimized coupling coefficients are first derived for the one dimensional unsteady heat equation with linear boundary conditions and for the steady heat equation with non-linear boundary conditions. The choice of these coefficients is shown to guarantee the convergence of the method. Using a linearization of the boundary conditions, the method is then extended to the case of a general unsteady heat conduction problem. The method is tested on simple cases and the convergence properties are assessed theoretically and numerically. Finally the method is applied to the simulation of an aircraft electrothermal de-icing problem in two dimensions.

Details

Language :
English
ISSN :
08981221
Database :
OpenAIRE
Journal :
Computers & Mathematics with Applications, Computers & Mathematics with Applications, 2020, 80 (6), pp.1500-1522. ⟨10.1016/j.camwa.2020.07.017⟩, Computers & Mathematics with Applications, Elsevier, 2020, 80 (6), pp.1500-1522. ⟨10.1016/j.camwa.2020.07.017⟩
Accession number :
edsair.doi.dedup.....c2608a1e0424a1696f68945de9257657
Full Text :
https://doi.org/10.1016/j.camwa.2020.07.017⟩