Back to Search Start Over

Big data and Smart data: two interdependent and synergistic digital policies within a virtuous data exploitation loop

Authors :
Jean-Sébastien Lacam
David Salvetat
Ecole Supérieure des Sciences Commerciales d'Angers (ESSCA)
Clermont Recherche Management (CleRMa)
École Supérieure de Commerce (ESC) - Clermont-Ferrand (ESC Clermont-Ferrand)-Université Clermont Auvergne (UCA)
Groupe ESSCA (ESSCA)
Source :
Journal of High Technology Management Research, Journal of High Technology Management Research, Elsevier, 2021, 32 (1), pp.100406. ⟨10.1016/j.hitech.2021.100406⟩, Journal of High Technology Management Research, 2021, 32 (1), pp.100406. ⟨10.1016/j.hitech.2021.100406⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; This research examines for the first time the relationship between Big data and Smart data among French automotive distributors. Many low-tech firms engage in these data policies to improve their decisions and performance through the predictive capacities of their data. A discussion emerges in the literature according to which an effective policy lies in the conversion of a mass of raw data into so-called intelligent data. In order to understand better this digital transition, we question the transformation of data policies practiced in low-tech firms through the founding model of 3Vs (Volume, Variety and Velocity of data). First of all, this empirical study of 112 French automotive distributors develops the existing literature by 2 proposing an original and detailed typology of the data policies practiced (Low data, Big data and Smart data). Secondly, after specifying the elements of the differences between the quantitative nature of Big data and the qualitative nature of Smart data, our results reveal and analyse for the first time the existence of their synergistic relationship. Companies transform their Big data approach into Smart data when they move from massive exploitation to intelligent exploitation of their data. The phenomenon is part of a high-end loop data exploitation. Initially, the exploitation of intelligent data can only be done by extracting a sample from a large raw data pool previously made by a Big data policy. Secondly, the organization's raw data pool is in turn enriched by the repayment of contributions made by the Smart data approach. Thus, this study develops three important ways. First off, we identify, detail and compare the current data policies of a traditional industry. Secondly, we reveal and explain the evolution of digital practices within organizations that now combine both quantitative and qualitative data exploitation. Finally, our results guide decision-makers towards the synergistic and the legitimate association of different forms of data management for better performance.; Nombreuses sont les firmes qui désormais s’engagent dans des politiques Big data ou Smart data afin d’améliorer leurs décisions. Malgré leur popularité, peu de connaissances sont à ce jour proposées concernant la nature de ces deux démarches que l’on oppose souvent en raison de leurs différents degrés de finesse d’exploitation des données. Notre étude quantitative auprès de 112 PME de la distribution automobile décrit puis explique leur différenciation et leur complémentarité vertueuse.

Details

Language :
English
ISSN :
10478310
Database :
OpenAIRE
Journal :
Journal of High Technology Management Research, Journal of High Technology Management Research, Elsevier, 2021, 32 (1), pp.100406. ⟨10.1016/j.hitech.2021.100406⟩, Journal of High Technology Management Research, 2021, 32 (1), pp.100406. ⟨10.1016/j.hitech.2021.100406⟩
Accession number :
edsair.doi.dedup.....c25a35eb6400a11da8b133a6f9789253
Full Text :
https://doi.org/10.1016/j.hitech.2021.100406⟩