Back to Search Start Over

New Generation UV-A Filters: Understanding Their Photodynamics on a Human Skin Mimic

Authors :
Daniel J. L. Coxon
Vasilios G. Stavros
Mariana T. do Casal
Benjamin Rioux
Natércia d. N. Rodrigues
Matthieu M. Mention
Patrick Balaguer
Cédric Peyrot
Josene M. Toldo
Michael D. Horbury
Casey Ho
Florent Allais
Temitope T. Abiola
Mario Barbatti
BARBATTI, Mario
Institut de Chimie Radicalaire (ICR)
Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Department of Chemistry [University of Warwick]
University of Warwick [Coventry]
University of Leeds
Agro-Biotechnologies Industrielles (ABI)
AgroParisTech
Centre Européen de Biotechnologies et Bioéconomie (CEBB)
Institut du Cancer de Montpellier (ICM)
Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM)
CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
European Project: 828753,BoostCrop
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Source :
Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, American Chemical Society, 2020, The Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, 2021, 12 (1), pp.337-344. ⟨10.1021/acs.jpclett.0c03004⟩, Journal of Physical Chemistry Letters, 2020, HAL
Publication Year :
2021
Publisher :
AMER CHEMICAL SOC, 2021.

Abstract

The sparsity of efficient commercial ultraviolet-A (UV-A) filters is a major challenge toward developing effective broadband sunscreens with minimal human- and eco-toxicity. To combat this, we have designed a new class of Meldrum-based phenolic UV-A filters. We explore the ultrafast photodynamics of coumaryl Meldrum, CMe, and sinapyl Meldrum (SMe), both in an industry-standard emollient and on a synthetic skin mimic, using femtosecond transient electronic and vibrational absorption spectroscopies and computational simulations. Upon photoexcitation to the lowest excited singlet state (S1), these Meldrum-based phenolics undergo fast and efficient nonradiative decay to repopulate the electronic ground state (S0). We propose an initial ultrafast twisted intramolecular charge-transfer mechanism as these systems evolve out of the Franck-Condon region toward an S1/S0 conical intersection, followed by internal conversion to S0 and subsequent vibrational cooling. Importantly, we correlate these findings to their long-term photostability upon irradiation with a solar simulator and conclude that these molecules surpass the basic requirements of an industry-standard UV filter. ispartof: JOURNAL OF PHYSICAL CHEMISTRY LETTERS vol:12 issue:1 pages:337-344 ispartof: location:United States status: published

Details

Language :
English
ISSN :
19487185
Database :
OpenAIRE
Journal :
Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, American Chemical Society, 2020, The Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, 2021, 12 (1), pp.337-344. ⟨10.1021/acs.jpclett.0c03004⟩, Journal of Physical Chemistry Letters, 2020, HAL
Accession number :
edsair.doi.dedup.....c220b6a73e42e5c5e5cb4b288980184f
Full Text :
https://doi.org/10.1021/acs.jpclett.0c03004⟩