Back to Search
Start Over
AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins
- Source :
- Molecular and Cellular Proteomics, Molecular and Cellular Proteomics, American Society for Biochemistry and Molecular Biology, 2010, 9 (6), pp.1063-84. ⟨10.1074/mcp.M900325-MCP200⟩, Molecular and Cellular Proteomics, 2010, 9 (6), pp.1063-84. ⟨10.1074/mcp.M900325-MCP200⟩
- Publication Year :
- 2010
- Publisher :
- HAL CCSD, 2010.
-
Abstract
- International audience; Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.
- Subjects :
- 0106 biological sciences
Chloroplasts
Arabidopsis thaliana
thylakoid
Arabidopsis
plant
Proteomics
computer.software_genre
Thylakoids
01 natural sciences
Biochemistry
Mass Spectrometry
Analytical Chemistry
Databases, Protein
database
chemistry.chemical_classification
0303 health sciences
Database
Amino acid
Chloroplast
Thylakoid
Proteome
Subcellular Fractions
proteome
Blotting, Western
Biology
Cell Fractionation
envelope membrane
plastidial localization
03 medical and health sciences
proteomics
Stroma
chloroplast
stroma
[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology
Molecular Biology
030304 developmental biology
Arabidopsis Proteins
Research
Reproducibility of Results
Intracellular Membranes
biology.organism_classification
Cell Compartmentation
chemistry
Chloroplast Proteins
Peptides
protein
computer
010606 plant biology & botany
Subjects
Details
- Language :
- English
- ISSN :
- 15359476 and 15359484
- Database :
- OpenAIRE
- Journal :
- Molecular and Cellular Proteomics, Molecular and Cellular Proteomics, American Society for Biochemistry and Molecular Biology, 2010, 9 (6), pp.1063-84. ⟨10.1074/mcp.M900325-MCP200⟩, Molecular and Cellular Proteomics, 2010, 9 (6), pp.1063-84. ⟨10.1074/mcp.M900325-MCP200⟩
- Accession number :
- edsair.doi.dedup.....c20f40f57b0506700d224dc522174218