Back to Search
Start Over
Quantum-to-classical transition in the work distribution for chaotic systems
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2017
- Publisher :
- American Physical Society, 2017.
-
Abstract
- The work distribution is a fundamental quantity in nonequilibrium thermodynamics mainly due to its connection with fluctuations theorems. Here we develop a semiclassical approximation to the work distribution for a quench process in chaotic systems. The approach is based on the dephasing representation of the quantum Loschmidt echo and on the quantum ergodic conjecture, which states that the Wigner function of a typical eigenstate of a classically chaotic Hamiltonian is equidistributed on the energy shell. We show that our semiclassical approximation is accurate in describing the quantum distribution as we increase the temperature. Moreover, we also show that this semiclassical approximation provides a link between the quantum and classical work distributions.<br />Comment: 4+ pages, 4 figures. 2+ pages Sup. Mat
- Subjects :
- Dephasing
Ciencias Físicas
Chaotic
Non-equilibrium thermodynamics
Semiclassical physics
FOS: Physical sciences
01 natural sciences
010305 fluids & plasmas
purl.org/becyt/ford/1 [https]
symbols.namesake
0103 physical sciences
THERMODYNAMICS
Wigner distribution function
010306 general physics
Quantum
Physics
Quantum Physics
purl.org/becyt/ford/1.3 [https]
Nonlinear Sciences - Chaotic Dynamics
Nonlinear Sciences::Chaotic Dynamics
Astronomía
Classical mechanics
symbols
Quantum ergodicity
Chaotic Dynamics (nlin.CD)
Hamiltonian (quantum mechanics)
Quantum Physics (quant-ph)
QUANTUM
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....c1db0d7af23d693fddcc05d0e097b1b4
- Full Text :
- https://doi.org/10.1103/PhysRevE.95.050102