Back to Search Start Over

Expression and function of adrenomedullin and its receptors in Conn's adenoma cells

Authors :
Lucia Gottardo
Ludwik K. Malendowicz
Myriam Forneris
Gastone G. Nussdorfer
Giovanna Albertin
Publication Year :
2001

Abstract

Adrenomedullin (ADM) is a hypotensive peptide, that derives from the proteolytic cleavage of pro(p)ADM and acts through two subtypes of receptors, called L1-receptor (L1-R) and calcitonin receptor-like receptor (CRLR). CRLR may function as a calcitonin gene-related peptide or a selective ADM receptor depending on the expression of the subtype 1 or the subtypes 2 and 3 of a family of proteins, named receptor-activity modifying proteins (RAMPs). Reverse transcription (RT)-polymerase chain reaction (PCR) allowed the detection of pADM mRNA in dispersed cells of eight Conn's adenomas (aldosteronomas). These cells also expressed peptidyl-glycine alpha-amidating monooxigenase, the enzyme converting immature ADM to the mature form, and contained sizeable amounts of ADM-immunoreactivity as measured by radioimmunoassay. RT-PCR also demonstrated the presence in aldosteronoma cells of the specific mRNAs of L1-R, CRLR and RAMPs 1-3. ADM (10(-8) M) inhibited angiotensin-II (10(-9) M)-simulated aldosterone secretion from cultured aldosteronoma cells, without affecting basal production. ADM (10(-8) M) also enhanced basal proliferation rate of cultured cells, as estimated by the 5-bromo-2'-deoxyuridine immunocytochemical technique. Both effects of ADM were annulled by the ADM-receptor selective antagonist ADM22-52 (10(-7) M). In conclusion, our study provides evidence that aldosteronoma cells express both ADM and ADM22-52-sensitive receptors. These findings, coupled with the demonstration that ADM exerts an aldosterone antisecretagogue action and a proliferogenic effect on cultured aldosteronoma cells, make it likely that endogenous ADM system plays a potentially important role in the paracrine or autocrine functional control of Conn's adenomas.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....c1bb5e71e67951493d923a2b0cda37e5