Back to Search
Start Over
Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives
- Source :
- Chemical Science, 7(6), Chem. Sci., 2016, Advance Article
- Publication Year :
- 2016
- Publisher :
- ROYAL SOC CHEMISTRY, 2016.
-
Abstract
- We report the synthesis and excited-state dynamics of a series of five bichromophoric light-harvesting antenna systems, which are capable of efficient harvesting of solar energy in the spectral range of 350–580 nm. These antenna systems have been synthesized in a modular fashion by the covalent attachment of blue light absorbing naphthalene monoimide energy donors (D1, D2, and D3) to green light absorbing perylene-3,4,9,10-tetracarboxylic acid derived energy acceptors, 1,7-perylene-3,4,9,10-tetracarboxylic tetrabutylester (A1), 1,7-perylene-3,4,9,10-tetracarboxylic monoimide dibutylester (A2), and 1,7-perylene-3,4,9,10-tetracarboxylic bisimide (A3). The energy donors have been linked at the 1,7-bay-positions of the perylene derivatives, thus leaving the peri positions free for further functionalization and device construction. A highly stable and rigid structure, with no electronic communication between the donor and acceptor components, has been realized via an all-aromatic non-conjugated phenoxy spacer between the constituent chromophores. The selection of donor naphthalene derivatives for attachment with perylene derivatives was based on the effective matching of their respective optical properties to achieve efficient excitation energy transfer (EET) by the Förster mechanism. A comprehensive study of the excited-state dynamics, in toluene, revealed quantitative and ultrafast (ca. 1 ps) intramolecular EET from donor naphthalene chromophores to the acceptor perylenes in all the studied systems. Electron transfer from the donor naphthalene chromophores to the acceptor perylenes has not been observed, not even for antenna systems in which this process is thermodynamically allowed. Due to the combination of an efficient and fast energy transfer along with broad absorption in the visible region, these antenna systems are promising materials for solar-to-electric and solar-to-fuel devices.
- Subjects :
- Interdisciplinary Centre for Energy Research
010405 organic chemistry
Chemistry
General Chemistry
Chromophore
010402 general chemistry
Photochemistry
01 natural sciences
Acceptor
0104 chemical sciences
Electron transfer
chemistry.chemical_compound
Covalent bond
Intramolecular force
Antenna (radio)
Absorption (electromagnetic radiation)
Perylene
Subjects
Details
- Language :
- English
- ISSN :
- 20416520 and 20416539
- Database :
- OpenAIRE
- Journal :
- Chemical Science, 7(6), Chem. Sci., 2016, Advance Article
- Accession number :
- edsair.doi.dedup.....c1720676c2ccf0f62bcc991d2bec5add
- Full Text :
- https://doi.org/10.1039/c6sc00386a