Back to Search Start Over

The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots

Authors :
Dai-Wen Pang
Huihui Liu
Bi-Hai Huang
Yide He
Junpeng Fan
Zhi-Xiong Xie
Weikun Tang
Source :
International Journal of Nanomedicine
Publication Year :
2012
Publisher :
Dove Medical Press, 2012.

Abstract

Weikun Tang,1 Junpeng Fan,1 Yide He,1 Bihai Huang,2 Huihui Liu,1 Daiwen Pang,2 Zhixiong Xie11College of Life Sciences, 2College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of ChinaAbstract: Quantum dots (QDs) have many potential clinical and biological applications because of their advantages over traditional fluorescent dyes. However, the genotoxicity potential of QDs still remains unclear. In this paper, a plasmid-based system was designed to explore the genotoxic mechanism of QDs by detecting changes in DNA configuration and biological activities. The direct chemicobiological interactions between DNA and mercaptoacetic acid-coated CdSe-core QDs (MAA–QDs) were investigated. After incubation with different concentrations of MAA–QDs (0.043, 0.13, 0.4, 1.2, and 3.6 µmol/L) in the dark, the DNA conversion of the covalently closed circular (CCC) DNA to the open circular (OC) DNA was significantly enhanced (from 13.9% ± 2.2% to 59.9% ± 12.8%) while the residual transformation activity of plasmid DNA was greatly decreased (from 80.7% ± 12.8% to 13.6% ± 0.8%), which indicated that the damages to the DNA structure and biological activities induced by MAA–QDs were concentration-dependent. The electrospray ionization mass spectrometry data suggested that the observed genotoxicity might be correlated with the cadmium–mercaptoacetic acid complex (Cd–MAA) that is formed in the solution of MAA–QDs. Circular dichroism spectroscopy and transformation assay results indicated that the Cd–MAA complex might interact with DNA through the groove-binding mode and prefer binding to DNA fragments with high adenine and thymine content. Furthermore, the plasmid transformation assay could be used as an effective method to evaluate the genotoxicities of nanoparticles.Keywords: genotoxicity, MAA CdSe quantum dots, cadmium–MAA complex, transformation assay, DNA&nbsp

Details

Language :
English
ISSN :
11782013 and 11769114
Volume :
7
Database :
OpenAIRE
Journal :
International Journal of Nanomedicine
Accession number :
edsair.doi.dedup.....c150984c5a5236db0bffe4b35683a6c8