Back to Search Start Over

Benchmarking Big Data OLAP NoSQL Databases

Authors :
Arlind Kopliku
Essaid Sabir
Mohammed El Malki
Olivier Teste
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université Hassan II Casablanca - UH2C (MOROCCO)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Source :
Ubiquitous Networking ISBN: 9783030028480, UNet
Publication Year :
2018
Publisher :
Springer, 2018.

Abstract

With the advent of Big Data, new challenges have emerged regarding the evaluation of decision support systems (DSS). Existing evaluation benchmarks are not configured to handle a massive data volume and wide data diversity. In this paper, we introduce a new DSS benchmark that supports multiple data storage systems, such as relational and Not Only SQL (NoSQL) systems. Our scheme recognizes numerous data models (snowflake, star and flat topologies) and several data formats (CSV, JSON, TBL, XML, etc.). It entails complex data generation characterized within “volume, variety, and velocity” framework (3 V). Next, our scheme enables distributed and parallel data generation. Furthermore, we exhibit some experimental results with KoalaBench.

Details

Language :
English
ISBN :
978-3-030-02848-0
ISBNs :
9783030028480
Database :
OpenAIRE
Journal :
Ubiquitous Networking ISBN: 9783030028480, UNet
Accession number :
edsair.doi.dedup.....c1310b036cc05338c1f4948543416320