Back to Search Start Over

Random distribution of polydisperse ellipsoidal inclusions and homogenization estimates for porous elastic materials

Authors :
M. Pellerin
Renald Brenner
Kostas Danas
F. Hong
K. Anoukou
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Mécanique et Ingénierie des Solides Et des Structures (IJLRDA-MISES)
Institut Jean Le Rond d'Alembert (DALEMBERT)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Computers and Structures, Computers and Structures, Elsevier, 2018, ⟨10.1016/j.compstruc.2018.08.006⟩, Computers & Structures
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; This work proposes an extension of the well-known random sequential adsorption (RSA) method in the context of non-overlapping random mono-and polydisperse ellipsoidal inclusions. The algorithm is general and can deal with inclusions of different size, shape and orientation with or without periodic geometrical constraints. Specifically, polydisperse inclusions, which can be in terms of different size, shape, orientation or even material properties, allow for larger volume fractions without the need of additional changes in the main algorithm. Unit-cell computations are performed by using either the fast Fourier transformed-based numerical scheme (FFT) or the finite element method (FEM) to estimate the effective elastic properties of voided particulate microstructures. We observe that an isotropic overall response is very difficult to obtain for random distributions of spheroidal inclusions with high aspect ratio. In particular, a substantial increase (or decrease) of the aspect ratio of the voids leads to a markedly anisotropic response of the porous material, which is intrinsic of the RSA construction. The numerical estimates are probed by analytical Hashin-Shtrikman-Willis (HSW) estimates and bounds.

Details

Language :
English
ISSN :
00457949
Database :
OpenAIRE
Journal :
Computers and Structures, Computers and Structures, Elsevier, 2018, ⟨10.1016/j.compstruc.2018.08.006⟩, Computers & Structures
Accession number :
edsair.doi.dedup.....c122a040aaba1028690b3d5cc9f14ed9