Back to Search Start Over

Enhanced energy transport in genetically engineered excitonic networks

Authors :
Alessandro Iagatti
Heechul Park
Luigi Abbondanza
Hannah C. Johnsen
Laura Bussotti
Roberto Fusco
Masoud Mohseni
Patrick Rebentrost
Filippo Caruso
Barbara Patrizi
Petra F. Scudo
Nimrod Heldman
Angela M. Belcher
Mario Salvalaggio
Seth Lloyd
Paolo Foggi
Andrea Alessi
Source :
Nature materials, 15 (2016): 211–217. doi:10.1038/NMAT4448, info:cnr-pdr/source/autori:Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M./titolo:Enhanced energy transport in genetically engineered excitonic networks/doi:10.1038%2FNMAT4448/rivista:Nature materials (Print)/anno:2016/pagina_da:211/pagina_a:217/intervallo_pagine:211–217/volume:15
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

Details

ISSN :
14764660 and 14761122
Volume :
15
Database :
OpenAIRE
Journal :
Nature Materials
Accession number :
edsair.doi.dedup.....c0f85f3fd7081f6bf79164be2faaf8ea
Full Text :
https://doi.org/10.1038/nmat4448