Back to Search
Start Over
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, AIP Advances, AIP Advances, Vol 10, Iss 4, Pp 045106-045106-9 (2020)
- Publication Year :
- 2020
- Publisher :
- AIP Publishing, 2020.
-
Abstract
- Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface. Fil: Narata, Ana Paula. Universite de Tours; Francia Fil: Silva de Moura, Fernando. Universidad Federal Do Abc; Brasil Fil: Patat, Fréderic. Universite de Tours; Francia Fil: Marzo, Alberto. The University Of Sheffield; Reino Unido Fil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Gregoire, Jean Marc. Universite de Tours; Francia Fil: Perrault, Cecile. The University Of Sheffield; Reino Unido Fil: Sennoga, Charles A.. Universite de Tours; Francia Fil: Bouakaz, Ayache. Universite de Tours; Francia
- Subjects :
- 010302 applied physics
Computer science
business.industry
Interface (computing)
flow diverter
General Physics and Astronomy
purl.org/becyt/ford/2.2 [https]
02 engineering and technology
Blood flow
Computational fluid dynamics
021001 nanoscience & nanotechnology
Interference (wave propagation)
01 natural sciences
Surgical planning
lcsh:QC1-999
aneurysms
purl.org/becyt/ford/2 [https]
Particle image velocimetry
Particle tracking velocimetry
0103 physical sciences
Boundary value problem
0210 nano-technology
business
lcsh:Physics
Simulation
Subjects
Details
- ISSN :
- 21583226
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- AIP Advances
- Accession number :
- edsair.doi.dedup.....c0c87307d63dc6d0f0cc04afaeec2aaf
- Full Text :
- https://doi.org/10.1063/1.5141350