Back to Search
Start Over
Self-dualities and renormalization dependence of the phase diagram in 3d O(N) vector models
- Source :
- Journal of High Energy Physics, Vol 2021, Iss 2, Pp 1-37 (2021), Journal of High Energy Physics, JHEP, JHEP, 2021, 02, pp.098. ⟨10.1007/JHEP02(2021)098⟩
- Publication Year :
- 2021
- Publisher :
- SpringerOpen, 2021.
-
Abstract
- In the classically unbroken phase, 3d $O(N)$ symmetric $\phi^4$ vector models admit two equivalent descriptions connected by a strong-weak duality closely related to the one found by Chang and Magruder long ago. We determine the exact analytic renormalization dependence of the critical couplings in the weak and strong branches as a function of the renormalization scheme (parametrized by $\kappa$) and for any $N$. It is shown that for $\kappa=\kappa_*$ the two fixed points merge and then, for $\kappa<br />Comment: 38 pages, 12 figures; v3: version to appear in JHEP
- Subjects :
- High Energy Physics - Theory
Nuclear and High Energy Physics
renormalization: dependence
dimension: 3
mass: gap
FOS: Physical sciences
Duality (optimization)
01 natural sciences
Renormalization
vacuum state: energy
High Energy Physics - Phenomenology (hep-ph)
High Energy Physics - Lattice
Physics - Statistical Mechanics
0103 physical sciences
phi**n model: 4
Renormalization Group
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
010306 general physics
Condensed Matter - Statistical Mechanics
Mathematical physics
Physics
Complex conjugate
Conformal Field Theory
Statistical Mechanics (cond-mat.stat-mech)
010308 nuclear & particles physics
Conformal field theory
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]
Field Theories in Lower Dimensions
Analytic continuation
High Energy Physics - Lattice (hep-lat)
Borel transformation
critical phenomena
Renormalization group
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
High Energy Physics - Phenomenology
High Energy Physics - Theory (hep-th)
self-duality
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
lcsh:QC770-798
expansion 1/N
Complex plane
Mass gap
Subjects
Details
- Language :
- English
- ISSN :
- 10298479
- Volume :
- 2021
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of High Energy Physics
- Accession number :
- edsair.doi.dedup.....c0c4ed96e04ea27e4d307c540d20069c
- Full Text :
- https://doi.org/10.1007/JHEP02(2021)098⟩