Back to Search Start Over

Non-monotone target sets for threshold values restricted to $0$, $1$, and the vertex degree

Authors :
Baste, Julien
Ehard, Stefan
Rautenbach, Dieter
Operational Research, Knowledge And Data (ORKAD)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Universität Ulm - Ulm University [Ulm, Allemagne]
Source :
Discrete Mathematics and Theoretical Computer Science, Discrete Mathematics and Theoretical Computer Science, 2022, 24 (1), ⟨10.46298/dmtcs.6844⟩
Publication Year :
2022
Publisher :
episciences.org, 2022.

Abstract

International audience; We consider a non-monotone activation process $(X_t)_{t\in\{ 0,1,2,\ldots\}}$ on a graph $G$, where $X_0\subseteq V(G)$, $X_t=\{ u\in V(G):|N_G(u)\cap X_{t-1}|\geq \tau(u)\}$ for every positive integer $t$, and $\tau:V(G)\to \mathbb{Z}$ is a threshold function. The set $X_0$ is a so-called non-monotone target set for $(G,\tau)$ if there is some $t_0$ such that $X_t=V(G)$ for every $t\geq t_0$. Ben-Zwi, Hermelin, Lokshtanov, and Newman [Discrete Optimization 8 (2011) 87-96] asked whether a target set of minimum order can be determined efficiently if $G$ is a tree. We answer their question in the affirmative for threshold functions $\tau$ satisfying $\tau(u)\in \{ 0,1,d_G(u)\}$ for every vertex~$u$. For such restricted threshold functions, we give a characterization of target sets that allows to show that the minimum target set problem remains NP-hard for planar graphs of maximum degree $3$ but is efficiently solvable for graphs of bounded treewidth.

Details

Language :
English
ISSN :
14627264 and 13658050
Database :
OpenAIRE
Journal :
Discrete Mathematics and Theoretical Computer Science, Discrete Mathematics and Theoretical Computer Science, 2022, 24 (1), ⟨10.46298/dmtcs.6844⟩
Accession number :
edsair.doi.dedup.....c0b06d030d996f30b5663082e4458c95
Full Text :
https://doi.org/10.46298/dmtcs.6844⟩