Back to Search Start Over

Point pattern search in big data

Authors :
Eduardo Ogasawara
Alberto Krone-Martins
Fabio Porto
Dennis Shasha
Patrick Valduriez
João Guilherme Nobre Rittmeyer
Laboratorio Nacional de Computação Cientifica [Rio de Janeiro] (LNCC / MCT)
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (Rio de Janeiro) ( CEFET/RJ)
University of Lisboa
Scientific Data Management (ZENITH)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut de Biologie Computationnelle (IBC)
Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Courant Institute of Mathematical Sciences [New York] (CIMS)
New York University [New York] (NYU)
NYU System (NYU)-NYU System (NYU)
Inria associated team SciDISC
Biology Computational Institute (IBC)
European Project: 689772,H2020 Pilier Industrial Leadership,H2020-EUB-2015,HPC4E(2015)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Source :
SSDBM, 30th International Conference on Scientific and Statistical Database Management, SSDBM: Scientific and Statistical Database Management, SSDBM: Scientific and Statistical Database Management, Jul 2018, Bozen-Bolzano, Italy. pp.#21, ⟨10.1145/3221269.3221294⟩
Publication Year :
2018
Publisher :
ACM, 2018.

Abstract

International audience; Consider a set of points P in space with at least some of the pairwise distances specified. Given this set P, consider the following three kinds of queries against a database D of points : (i) pure constellation query: find all sets S in D of size |P| that exactly match the pairwise distances within P up to an additive error ϵ; (ii) isotropic constellation queries: find all sets S in D of size |P| such that there exists some scale factor f for which the distances between pairs in S exactly match f times the distances between corresponding pairs of P up to an additive ϵ; (iii) non-isotropic constellation queries: find all sets S in D of size |P| such that there exists some scale factor f and for at least some pairs of points, a maximum stretch factor m i, j > 1 such that (f × m i, j ×dist(pi, pj))+ϵ > dist(si,sj) >(f × dist(pi, pj))-ϵ. Finding matches to such queries has applications to spatial data in astronomical, seismic, and any domain in which (approximate, scale-independent) geometrical matching is required. Answering the isotropic and non-isotropic queries is challenging because scale factors and stretch factors may take any of an infinite number of values. This paper proposes practically efficient sequential and distributed algorithms for pure, isotropic, and non-isotropic constellation queries. As far as we know, this is the first work to address isotropic and non-isotropic queries.

Details

Database :
OpenAIRE
Journal :
Proceedings of the 30th International Conference on Scientific and Statistical Database Management
Accession number :
edsair.doi.dedup.....c094219e25424d9e85e3fc125be0879f
Full Text :
https://doi.org/10.1145/3221269.3221294