Back to Search
Start Over
Valley coherent exciton-polaritons in a monolayer semiconductor
- Source :
- Nature Communications, Nature Communications, 2018, 9 (1), pp.7249. ⟨10.1038/s41467-018-07249-z⟩, Dufferwiel, S, Lyons, T P, Solnyshkov, D D, Trichet, A A P, Catanzaro, A, Withers, F, Malpuech, G, Smith, J M, Novoselov, K S, Skolnick, M S, Krizhanovskii, D N & Tartakovskii, A I 2018, ' Valley coherent exciton-polaritons in a monolayer semiconductor ', Nature Communications, vol. 9, no. 1 . https://doi.org/10.1038/s41467-018-07249-z, Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.7249. ⟨10.1038/s41467-018-07249-z⟩, Nature Communications, Vol 9, Iss 1, Pp 1-7 (2018)
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45° at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.<br />The short exciton life time in atomically thin transition metal dichalcogenides poses limitations to efficient control of the valley pseudospin and coherence. Here, the authors manipulate the exciton coherence in a WSe2 monolayer embedded in an optical microcavity in the strong light-matter coupling regime.
- Subjects :
- Exciton
Science
General Physics and Astronomy
FOS: Physical sciences
Physics::Optics
02 engineering and technology
Exciton-polaritons
01 natural sciences
General Biochemistry, Genetics and Molecular Biology
Article
law.invention
Condensed Matter::Materials Science
National Graphene Institute
law
0103 physical sciences
Monolayer
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Polariton
010306 general physics
lcsh:Science
Physics
Condensed Matter::Quantum Gases
Multidisciplinary
Condensed matter physics
Condensed Matter - Mesoscale and Nanoscale Physics
business.industry
Linear polarization
Condensed Matter::Other
General Chemistry
021001 nanoscience & nanotechnology
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
Optical microcavity
ResearchInstitutes_Networks_Beacons/national_graphene_institute
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
lcsh:Q
Photonics
0210 nano-technology
business
Coherence (physics)
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Database :
- OpenAIRE
- Journal :
- Nature Communications, Nature Communications, 2018, 9 (1), pp.7249. ⟨10.1038/s41467-018-07249-z⟩, Dufferwiel, S, Lyons, T P, Solnyshkov, D D, Trichet, A A P, Catanzaro, A, Withers, F, Malpuech, G, Smith, J M, Novoselov, K S, Skolnick, M S, Krizhanovskii, D N & Tartakovskii, A I 2018, ' Valley coherent exciton-polaritons in a monolayer semiconductor ', Nature Communications, vol. 9, no. 1 . https://doi.org/10.1038/s41467-018-07249-z, Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.7249. ⟨10.1038/s41467-018-07249-z⟩, Nature Communications, Vol 9, Iss 1, Pp 1-7 (2018)
- Accession number :
- edsair.doi.dedup.....c06db914259fbeaa0397bdcb4e812566
- Full Text :
- https://doi.org/10.1038/s41467-018-07249-z⟩