Back to Search Start Over

Determination of Ribonuclease H Surface Enzyme Kinetics by Surface Plasmon Resonance Imaging and Surface Plasmon Fluorescence Spectroscopy

Authors :
Robert M. Corn
Alastair W. Wark
Hyunmin Kim
Hye Jin Lee
Shiping Fang
Source :
Analytical Chemistry. 77:6528-6534
Publication Year :
2005
Publisher :
American Chemical Society (ACS), 2005.

Abstract

The kinetics of the ribonuclease H (RNase H) surface hydrolysis of RNA-DNA heteroduplexes formed on DNA microarrays was studied using a combination of real-time surface plasmon resonance imaging (SPRI) and surface plasmon fluorescence spectroscopy (SPFS). Time-dependent SPRI and SPFS data at various enzyme concentrations were quantitatively analyzed using a simple model that couples diffusion, enzyme adsorption, and surface enzyme kinetics. This model is characterized by a set of three rate constants, enzyme adsorption (k(a)), enzyme desorption (k(d)), enzyme catalysis (k(cat)), and one dimensionless diffusion parameter (beta). Values of k(a) = 3.15 (+/-0.20) x 10(6) M(-1).s(-1), k(d) = 0.10 (+/-0.05) s(-1), and k(cat) = 0.95 (+/-0.10) s(-1) were determined from fitting all of the SPRI and SPFS data sets. One of the most interesting kinetic parameters is the surface RNase H hydrolysis reaction rate constant (k(cat)), which was found to be approximately 10 times slower than that observed in solution, but approximately 100 times faster than that recently observed for the exonuclease III surface hydrolysis of double-stranded DNA microarrays (k(cat) = 0.009 s(-1)). Moreover, the surface coverage of the intermediate enzyme-substrate complex (ES) was found to be extremely small during the course of the reaction because k(cat) is much larger than the product of k(a) and the bulk enzyme concentration.

Details

ISSN :
15206882 and 00032700
Volume :
77
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....c05aa15ad5238588c0831ab9f22a065d
Full Text :
https://doi.org/10.1021/ac051283m