Back to Search
Start Over
Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al-Mg Alloy
- Source :
- Lee, Zonghoon; Radmilovic, Velimir; Ahn, Byungmin; Lavernia, Enrique J.; & Nutt, Steven R.(2010). Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al-Mg Alloy. Metallurgical and Materials Transactions A, 41(4), pp 795-801. doi: 10.1007/s11661-009-0007-y. Retrieved from: http://www.escholarship.org/uc/item/6sq885f5
- Publisher :
- Springer Nature
-
Abstract
- The tensile fractures of ultrafine-grained (UFG) Al-Mg alloy with a bimodal grain size were investigated at the micro- and macroscale using transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with focused ion beam (FIB), and optical microscopy. The nanoscale voids and crack behaviors near the tensile fracture surfaces were revealed in various scale ranges and provided the evidence to determine the underlying tensile deformation and fracture mechanisms associated with the bulk bimodal metals. The bimodal grain structures exhibit unusual deformation and fracture mechanisms similar to ductile-phase toughening of brittle materials. The ductile coarse grains in the UFG matrix effectively impede propagation of microcracks, resulting in enhanced ductility and toughness while retaining high strength. In view of the observations collected, we propose a descriptive model for tensile deformation and fracture of bimodal UFG metals.
- Subjects :
- Toughness
Materials science
Material Science
Structural Materials
Ceramics, Glass, Composites, Natural Methods
Metallurgy
Metals and Alloys
Materials Science, general
Fracture mechanics
Condensed Matter Physics
Physical Chemistry
Grain size
Metallic Materials
Brittleness
Mechanics of Materials
Ultimate tensile strength
Fracture (geology)
Deformation (engineering)
Ductility
Subjects
Details
- Language :
- English
- ISSN :
- 10735623
- Volume :
- 41
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Metallurgical and Materials Transactions A
- Accession number :
- edsair.doi.dedup.....c02c0ccd40e2dff899fadb9a7a51826f
- Full Text :
- https://doi.org/10.1007/s11661-009-0007-y