Back to Search
Start Over
Functional Connectivity Combined With a Machine Learning Algorithm Can Classify High-Risk First-Degree Relatives of Patients With Schizophrenia and Identify Correlates of Cognitive Impairments
- Source :
- Frontiers in Neuroscience, Vol 14 (2020), Frontiers in Neuroscience
- Publication Year :
- 2020
- Publisher :
- Frontiers Media SA, 2020.
-
Abstract
- Schizophrenia (SCZ) is an inherited disease, with the familial risk being among the most important factors when evaluating an individual’s risk for SCZ. However, robust imaging biomarkers for the disease that can be used for diagnosis and determination of the prognosis are lacking. Here, we explore the potential of functional connectivity (FC) for use as a biomarker for the early detection of high-risk first-degree relatives (FDRs). Thirty-eight first-episode SCZ patients, 38 healthy controls (HCs), and 33 FDRs were scanned using resting-state functional magnetic resonance imaging. The subjects’ brains were parcellated into 200 regions using the Craddock atlas, and the FC between each pair of regions was used as a classification feature. Multivariate pattern analysis using leave-one-out cross-validation achieved a correct classification rate of 88.15% [sensitivity 84.06%, specificity 92.18%, and area under the receiver operating characteristic curve (AUC) 0.93] for differentiating SCZ patients from HCs. FC located within the default mode, frontal-parietal, auditory, and sensorimotor networks contributed mostly to the accurate classification. The FC patterns of each FDR were input into each classification model as test data to obtain a corresponding prediction label (a total of 76 individual classification scores), and the averaged individual classification score was then used as a robust measure to characterize whether each FDR showed an SCZ-type or HC-type FC pattern. A significant negative correlation was found between the average classification scores of the FDRs and their semantic fluency scores. These findings suggest that FC combined with a machine learning algorithm could help to predict whether FDRs are likely to show an SCZ-specific or HC-specific FC pattern.
- Subjects :
- Machine learning
computer.software_genre
first-degree relatives
lcsh:RC321-571
Feature (machine learning)
medicine
First-degree relatives
lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry
Default mode network
Original Research
Receiver operating characteristic
medicine.diagnostic_test
business.industry
General Neuroscience
functional connectivity
Cognition
medicine.disease
schizophrenia
machine learning
Schizophrenia
Biomarker (medicine)
Artificial intelligence
cognitive impairments
Functional magnetic resonance imaging
business
Algorithm
computer
Neuroscience
Subjects
Details
- ISSN :
- 1662453X
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Frontiers in Neuroscience
- Accession number :
- edsair.doi.dedup.....c0194aef6faba942f2537f14ace48bd2
- Full Text :
- https://doi.org/10.3389/fnins.2020.577568