Back to Search
Start Over
Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes
- Source :
- Cells, Volume 10, Issue 10, Cells, Vol 10, Iss 2659, p 2659 (2021)
- Publication Year :
- 2021
-
Abstract
- Reduced levels of the sensory nerve neuropeptide substance P (SP) have been reported in the diabetic rat heart, the consequence being a loss of cardioprotection in response to ischemic post-conditioning. We considered whether this loss of SP also predisposes the heart to non-ischemic diabetic cardiomyopathy in the form of fibrosis and hypertrophy. We report that diabetic Leprdb/db mice have reduced serum SP and that administration of exogenous replacement SP ameliorated cardiac fibrosis. Cardiac hypertrophy did not occur in Leprdb/db mice. Cardiac fibroblasts exposed to high glucose converted to a myofibroblast phenotype and produced excess extracellular matrix proteins<br />this was prevented by the presence of SP in the culture media. Cardiac fibroblasts exposed to high glucose produced increased amounts of the receptor for advanced glycation end products, reactive oxygen species and inflammatory cytokines, all of which were prevented by SP. Cultured macrophages assumed an M1 pro-inflammatory phenotype in response to high glucose as indicated by increased TNF-α, CCL2, and IL-6. SP promoted a shift to the reparative M2 macrophage phenotype characterized by arginase-1 and IL-10. Leprdb/db mice showed increased left ventricular M1 phenotype macrophages and an increase in the M1/M2 ratio. Replacement SP in Leprdb/db mice restored a favorable M1 to M2 balance. Together these findings indicate that a loss of SP predisposes the diabetic heart to developing fibrosis. The anti-fibrotic actions of replacement SP involve direct effects on cardiac fibroblasts and macrophages to oppose adverse phenotype changes. This study identifies the potential of replacement SP to treat diabetic cardiomyopathy.
- Subjects :
- Male
medicine.medical_specialty
QH301-705.5
Cardiac fibrosis
Receptor for Advanced Glycation End Products
Cardiomyopathy
Inflammation
Cardiomegaly
heart
Substance P
Models, Biological
Article
Proinflammatory cytokine
Diabetes Mellitus, Experimental
Fibrosis
Internal medicine
Diabetic cardiomyopathy
medicine
Animals
Biology (General)
neuropeptide
diabetes
business.industry
Macrophages
Myocardium
General Medicine
Fibroblasts
medicine.disease
M2 Macrophage
myofibroblast
Mice, Inbred C57BL
Oxidative Stress
Endocrinology
Glucose
Phenotype
inflammation
Cytokines
Receptors, Leptin
medicine.symptom
business
Myofibroblast
cardiomyopathy
Subjects
Details
- ISSN :
- 20734409
- Volume :
- 10
- Issue :
- 10
- Database :
- OpenAIRE
- Journal :
- Cells
- Accession number :
- edsair.doi.dedup.....bfdbf7bde1018d77b762885beafaeabf