Back to Search
Start Over
An entropic Quantum Drift-Diffusion model for electron transport in resonant tunneling diodes
- Source :
- Journal of Computational Physics, Journal of Computational Physics, Elsevier, 2007, 221 (1), pp.226-249. ⟨10.1016/j.jcp.2006.06.027⟩, Journal of Computational Physics, 2007, 221 (1), pp.226-249. ⟨10.1016/j.jcp.2006.06.027⟩, Journal of Computational Physics, Elsevier, 2007, 221 (1), pp.226-249. 〈10.1016/j.jcp.2006.06.027〉
- Publication Year :
- 2007
- Publisher :
- HAL CCSD, 2007.
-
Abstract
- International audience; We present an entropic Quantum Drift Diffusion model (eQDD) and show how it can be derived on a bounded domain as the diffusive approximation of the Quantum Liouville equation with a quantum BGK operator. Some links between this model and other existing models are exhibited, especially with the Density Gradient (DG) model and the Schrödinger-Poisson Drift Diffusion model (SPDD). Then a finite difference scheme is proposed to discretize the eQDD model coupled to the Poisson equation and we show how this scheme can be slightly modified to discretize the other models. Numerical results show that the properties listed for the eQDD model are checked, as well as the model captures important features concerning the modeling of a resonant tunneling diode. To finish, some comparisons between the models stated above are realized.
- Subjects :
- Density matrix
Physics and Astronomy (miscellaneous)
Discretization
Resonant-tunneling diode
01 natural sciences
Schrödinger Poisson Drift Diffusion
Quantum mechanics
current-voltage characteristics
Statistical physics
resonant tunneling diode
0101 mathematics
[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Quantum Liouville
Quantum
Quantum tunnelling
density matrix
Physics
Numerical Analysis
82C70
Mathematical model
Applied Mathematics
entropic Quantum Drift Diffusion
010102 general mathematics
[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA]
Bhatnagar–Gross–Krook operator
Computer Science Applications
010101 applied mathematics
Computational Mathematics
Density Gradient
Modeling and Simulation
[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Poisson's equation
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Subjects
Details
- Language :
- English
- ISSN :
- 00219991 and 10902716
- Database :
- OpenAIRE
- Journal :
- Journal of Computational Physics, Journal of Computational Physics, Elsevier, 2007, 221 (1), pp.226-249. ⟨10.1016/j.jcp.2006.06.027⟩, Journal of Computational Physics, 2007, 221 (1), pp.226-249. ⟨10.1016/j.jcp.2006.06.027⟩, Journal of Computational Physics, Elsevier, 2007, 221 (1), pp.226-249. 〈10.1016/j.jcp.2006.06.027〉
- Accession number :
- edsair.doi.dedup.....bf93ba0d925b24f12c7c41ed5116cb63
- Full Text :
- https://doi.org/10.1016/j.jcp.2006.06.027⟩