Back to Search
Start Over
Supported Ultra-Thin Alumina Membranes with Graphene as Efficient Interference Enhanced Raman Scattering Platforms for Sensing
- Source :
- Digital.CSIC. Repositorio Institucional del CSIC, instname, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, Nanomaterials, Volume 10, Issue 5, E-Prints Complutense. Archivo Institucional de la UCM, Nanomaterials, Vol 10, Iss 830, p 830 (2020)
- Publication Year :
- 2020
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2020.
-
Abstract
- © 2020 by the authors.<br />The detection of Raman signals from diluted molecules or biomaterials in complex media is still a challenge. Besides the widely studied Raman enhancement by nanoparticle plasmons, interference mechanisms provide an interesting option. A novel approach for amplification platforms based on supported thin alumina membranes was designed and fabricated to optimize the interference processes. The dielectric layer is the extremely thin alumina membrane itself and, its metallic aluminum support, the reflecting medium. A CVD (chemical vapor deposition) single-layer graphene is transferred on the membrane to serve as substrate to deposit the analyte. Experimental results and simulations of the interference processes were employed to determine the relevant parameters of the structure to optimize the Raman enhancement factor (E.F.). Highly homogeneous E.F. over the platform surface are obtained, typically 370 ± (5%), for membranes with ~100 nm pore depth, ~18 nm pore diameter and the complete elimination of the Al2O3 bottom barrier layer. The combined surface enhanced Raman scattering (SERS) and interference amplification is also demonstrated by depositing ultra-small silver nanoparticles. This new approach to amplify the Raman signal of analytes is easily obtained, low-cost and robust with useful enhancement factors (~400) and allows only interference or combined enhancement mechanisms, depending on the analyte requirements.<br />The research leading to these results has received funding from Ministerio de Ciencia, Innovación y Universidades (RTI2018-096918-B-C41) and RTI2018-094040-B-I00) and by the Agency for Management of University and Research Grants (AGAUR) 2017-SGR-1527. S.C. acknowledges the grant BES-2016-076440 from MINECO.
- Subjects :
- Materials science
General Chemical Engineering
Nanoparticle
Chemical vapor deposition
Optical simulations
Article
law.invention
lcsh:Chemistry
symbols.namesake
Interference (communication)
law
General Materials Science
Plasmon
Física de materiales
business.industry
Graphene
technology, industry, and agriculture
Física
Alumina membrane
Enhanced Raman scattering
Membrane
lcsh:QD1-999
Física del estado sólido
SEM
symbols
Optoelectronics
Nanoparticles
AFM
business
Raman spectroscopy
Interference
Raman scattering
Subjects
Details
- Language :
- English
- ISSN :
- 20180969
- Database :
- OpenAIRE
- Journal :
- Digital.CSIC. Repositorio Institucional del CSIC, instname, E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid, Nanomaterials, Volume 10, Issue 5, E-Prints Complutense. Archivo Institucional de la UCM, Nanomaterials, Vol 10, Iss 830, p 830 (2020)
- Accession number :
- edsair.doi.dedup.....bf90c44c46163f131bc0a85900b375c5