Back to Search Start Over

Finitely strictly singular operators between James spaces

Authors :
Emmanuel Fricain
Dan Timotin
Alexey I. Popov
Isabelle Chalendar
Vladimir G. Troitsky
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
University of Alberta
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut Camille Jordan (ICJ)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé (LPP)
Source :
Journal of Functional Analysis, Journal of Functional Analysis, Elsevier, 2009, 256 (4), pp.1258-1268, Journal of Functional Analysis, 2009, 256 (4), pp.1258-1268
Publication Year :
2009
Publisher :
Elsevier BV, 2009.

Abstract

An operator T : X → Y between Banach spaces is said to be finitely strictly singular if for every e > 0 there exists n such that every subspace E ⊆ X with dim E ⩾ n contains a vector x such that ‖ T x ‖ e ‖ x ‖ . We show that, for 1 ⩽ p q ∞ , the formal inclusion operator from J p to J q is finitely strictly singular. As a consequence, we obtain that the strictly singular operator with no invariant subspaces constructed by C. Read is actually finitely strictly singular. These results are deduced from the following fact: if k ⩽ n then every k-dimensional subspace of R n contains a vector x with ‖ x ‖ l ∞ = 1 such that x m i = ( − 1 ) i for some m 1 ⋯ m k .

Details

ISSN :
00221236 and 10960783
Volume :
256
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....bf6824f08ac28cc31fd846bc2f02d0f0
Full Text :
https://doi.org/10.1016/j.jfa.2008.09.010