Back to Search Start Over

Learning to detect lymphocytes in immunohistochemistry with deep learning

Authors :
Geert Litjens
Mustapha Abubakar
Hans Pinckaers
Margarita Melnikova
Mart van Rijthoven
Oscar Geessink
Quirine F. Manson
Maschenka Balkenhol
Zaneta Swiderska-Chadaj
Jeroen van der Laak
Francesco Ciompi
Jeremy Parry
Mark E. Sherman
António Polónia
Source :
Medical Image Analysis, 58, Swiderska-Chadaj, Z, Pinckaers, H, van Rijthoven, M, Balkenhol, M, Melnikova, M, Geessink, O, Manson, Q, Sherman, M, Polonia, A, Parry, J, Abubakar, M, Litjens, G, van der Laak, J & Ciompi, F 2019, ' Learning to detect lymphocytes in immunohistochemistry with deep learning ', Medical Image Analysis, vol. 58, 101547 . https://doi.org/10.1016/j.media.2019.101547, Medical Image Analysis
Publication Year :
2019

Abstract

The immune system is of critical importance in the development of cancer. The evasion of destruction by the immune system is one of the emerging hallmarks of cancer. We have built a dataset of 171,166 manually annotated CD3 + and CD8 + cells, which we used to train deep learning algorithms for automatic detection of lymphocytes in histopathology images to better quantify immune response. Moreover, we investigate the effectiveness of four deep learning based methods when different subcompartments of the whole-slide image are considered: normal tissue areas, areas with immune cell clusters, and areas containing artifacts. We have compared the proposed methods in breast, colon and prostate cancer tissue slides collected from nine different medical centers. Finally, we report the results of an observer study on lymphocyte quantification, which involved four pathologists from different medical centers, and compare their performance with the automatic detection. The results give insights on the applicability of the proposed methods for clinical use. U-Net obtained the highest performance with an F1-score of 0.78 and the highest agreement with manual evaluation ( κ = 0.72 ), whereas the average pathologists agreement with reference standard was κ = 0.64 . The test set and the automatic evaluation procedure are publicly available at lyon19.grand-challenge.org .

Details

ISSN :
13618415
Volume :
58
Database :
OpenAIRE
Journal :
Medical Image Analysis
Accession number :
edsair.doi.dedup.....bf44d27c1248f43cfd52860be5813fb6
Full Text :
https://doi.org/10.1016/j.media.2019.101547