Back to Search Start Over

Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury

Authors :
Rochelle J. Deibert
Eric S. Wohleb
John F. Sheridan
Jonathan P. Godbout
Diana M. Norden
Christopher Hansen
D. Michele Basso
Timothy D. Faw
Source :
Experimental Neurology. 282:86-98
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24 h and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24 h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.

Details

ISSN :
00144886
Volume :
282
Database :
OpenAIRE
Journal :
Experimental Neurology
Accession number :
edsair.doi.dedup.....bf25ead57f2af4b57bd8c1864b4e6851
Full Text :
https://doi.org/10.1016/j.expneurol.2016.05.019