Back to Search
Start Over
Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers
- Publication Year :
- 2008
-
Abstract
- Here we report on a method that extends the study of the mechanical behavior of single proteins to the low force regime of optical tweezers. This experimental approach relies on the use of DNA handles to specifically attach the protein to polystyrene beads and minimize the non-specific interactions between the tethering surfaces. The handles can be attached to any exposed pair of cysteine residues. Handles of different lengths were employed to mechanically manipulate both monomeric and polymeric proteins. The low spring constant of the optical tweezers enabled us to monitor directly refolding events and fluctuations between different molecular structures in quasi-equilibrium conditions. This approach, which has already yielded important results on the refolding process of the protein RNase H (Cecconi et al. in Science 309: 2057-2060, 2005), appears robust and widely applicable to any protein engineered to contain a pair of reactive cysteine residues. It represents a new strategy to study protein folding at the single molecule level, and should be applicable to a range of problems requiring tethering of protein molecules.
- Subjects :
- Models, Molecular
Protein Folding
Optical Tweezers
Protein Conformation
Biophysics
Molecular Probe Techniques
DNA-binding protein
Article
Micromanipulation
Protein structure
Computer Simulation
RNase H
biology
Tethering
Chemistry
General Medicine
DNA
Folding (chemistry)
DNA-Binding Proteins
Crystallography
Optical tweezers
Models, Chemical
Laser tweezers, DNA handles, Protein-DNA, chimeras, Single molecule mechanical manipulation, Protein folding
biology.protein
Protein folding
Stress, Mechanical
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....bf099b9f6aa5c6f8489b5112b85aade8