Back to Search
Start Over
Characteristic cycles of local cohomology modules of monomial ideals
- Source :
- Recercat. Dipósit de la Recerca de Catalunya, instname
- Publisher :
- Elsevier Science B.V.
-
Abstract
- We study, by using the theory of algebraic D -modules, the local cohomology modules supported on a monomial ideal I of the local regular ring R=k[[x 1 ,…,x n ]] , where k is a field of characteristic zero. We compute the characteristic cycle of H I r (R) and H m p (H I r (R)) , where m is the maximal ideal of R and I is a squarefree monomial ideal. As a consequence, we can decide when the local cohomology module H I r (R) vanishes and compute the cohomological dimension cd(R,I) in terms of the minimal primary decomposition of the monomial ideal I . We also give a Cohen–Macaulayness criterion for the local ring R/I and compute the Lyubeznik numbers λ p,i (R/I)=dim k Ext R p (k,H I n−i (R)) .
- Subjects :
- Discrete mathematics
Monomial
Algebra and Number Theory
Mathematics::Commutative Algebra
Local ring
Monomial ideal
Field (mathematics)
Homologia, Teoria d'
Local cohomology
Cohomological dimension
local cohomology
Combinatorics
Regular ring
Maximal ideal
13 Commutative rings and algebras::13D Homological methods [Classificació AMS]
Mathematics
Algebra, Homological
Subjects
Details
- Language :
- English
- ISSN :
- 00224049
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Journal of Pure and Applied Algebra
- Accession number :
- edsair.doi.dedup.....bf08d45eda46f3afc9bc8a96bc029c9e
- Full Text :
- https://doi.org/10.1016/S0022-4049(98)00171-6