Back to Search Start Over

Characteristic cycles of local cohomology modules of monomial ideals

Authors :
Josep Àlvarez Montaner
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname
Publisher :
Elsevier Science B.V.

Abstract

We study, by using the theory of algebraic D -modules, the local cohomology modules supported on a monomial ideal I of the local regular ring R=k[[x 1 ,…,x n ]] , where k is a field of characteristic zero. We compute the characteristic cycle of H I r (R) and H m p (H I r (R)) , where m is the maximal ideal of R and I is a squarefree monomial ideal. As a consequence, we can decide when the local cohomology module H I r (R) vanishes and compute the cohomological dimension cd(R,I) in terms of the minimal primary decomposition of the monomial ideal I . We also give a Cohen–Macaulayness criterion for the local ring R/I and compute the Lyubeznik numbers λ p,i (R/I)=dim k Ext R p (k,H I n−i (R)) .

Details

Language :
English
ISSN :
00224049
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Pure and Applied Algebra
Accession number :
edsair.doi.dedup.....bf08d45eda46f3afc9bc8a96bc029c9e
Full Text :
https://doi.org/10.1016/S0022-4049(98)00171-6