Back to Search Start Over

Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells

Authors :
Ganesh V. Sangle
Xueping Xie
Subir K. Roy Chowdhury
Andrew J. Halayko
Gerald L. Stelmack
Garry X. Shen
Source :
American journal of physiology. Endocrinology and metabolism. 298(1)
Publication Year :
2009

Abstract

Atherosclerotic cardiovascular disease is the leading cause of mortality in the Western world. Dysfunction of the mitochondrial respiratory chain and overproduction of reactive oxygen species (ROS) are associated with atherosclerosis and cardiovascular disease. Oxidation increases the atherogenecity of LDL. Oxidized LDL may be apoptotic or nonapoptotic for vascular endothelial cells (EC), depending on the intensity of oxidation. A previous study demonstrated that nonapoptotic oxidized LDL increased activity of mitochondrial complex I in human umbilical vein EC. The present study examined the impact of extensively oxidized LDL (eoLDL) on oxygen consumption and the activities of key enzymes in the mitochondrial respiratory chain of cultured porcine aortic EC. Oxygraphy detected that eoLDL significantly reduced oxygen consumption in various mitochondrial complexes. Treatment with eoLDL significantly decreased NADH-ubiquinone dehydrogenase (complex I), succinate cytochrome c reductase (complex II/III), ubiquinone cytochrome c reductase (complex III), and cytochrome c oxidase (complex IV) activities and the NAD+-to-NADH ratio in EC compared with mildly oxidized LDL, LDL, or vehicle. Butylated hydroxytoluene, a potent antioxidant, normalized eoLDL-induced reductions in complex I and III enzyme activity in EC. Mitochondria-associated intracellular ROS and release of ROS from EC were significantly increased after eoLDL treatment. These findings suggest that eoLDL impairs enzyme activity in mitochondrial respiratory chain complexes and increases ROS generation from mitochondria of arterial EC. Collectively, these effects could contribute to vascular injury and atherogenesis under conditions of hypercholesterolemia and oxidative stress.

Details

ISSN :
15221555
Volume :
298
Issue :
1
Database :
OpenAIRE
Journal :
American journal of physiology. Endocrinology and metabolism
Accession number :
edsair.doi.dedup.....befac2da27400e8ac45e8fce2ce5c3b9