Back to Search
Start Over
Mean representation number of integers as the sum of primes
- Source :
- Nagoya Math. J. 200 (2010), 27-33, Nagoya Mathematical Journal, Nagoya Mathematical Journal, Duke University Press, 2010, pp.0-6, Nagoya Mathematical Journal, 2010, pp.0-6
- Publication Year :
- 2010
- Publisher :
- Duke University Press, 2010.
-
Abstract
- Assuming the Riemann hypothesis, we obtain asymptotic estimates for the mean value of the number of representations of an integer as a sum of two primes. By proving a corresponding Ω-term, we show that our result is essentially the best possible.
- Subjects :
- General Mathematics
01 natural sciences
asymptotic order
Combinatorics
symbols.namesake
Integer
Riemann sum
0103 physical sciences
11P32, 11P55
FOS: Mathematics
Number Theory (math.NT)
0101 mathematics
Representation (mathematics)
Idoneal number
11P32
Mathematics
11P55
Discrete mathematics
Mathematics - Number Theory
010308 nuclear & particles physics
Goldbach numbers
010102 general mathematics
Mean value
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Riemann hypothesis
symbols
AMS 11P32, 11P55
Sphenic number
Subjects
Details
- Language :
- English
- ISSN :
- 00277630
- Database :
- OpenAIRE
- Journal :
- Nagoya Math. J. 200 (2010), 27-33, Nagoya Mathematical Journal, Nagoya Mathematical Journal, Duke University Press, 2010, pp.0-6, Nagoya Mathematical Journal, 2010, pp.0-6
- Accession number :
- edsair.doi.dedup.....bef01b53e48f05ef042c4b68ca19d0f7