Back to Search Start Over

Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method

Authors :
Qihua Xiong
Ai Leen Koh
Chuanhong Jin
Chaohua Zhang
Hailin Peng
Weigao Xu
Qiucheng Li
Yu Zhou
Zhongfan Liu
Shuli Zhao
Source :
Nature Communications. 6
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Graphene/hexagonal boron nitride (h-BN) vertical heterostructures have recently revealed unusual physical properties and new phenomena, such as commensurate-incommensurate transition and fractional quantum hall states featured with Hofstadter's butterfly. Graphene-based devices on h-BN substrate also exhibit high performance owing to the atomically flat surface of h-BN and its lack of charged impurities. To have a clean interface between the graphene and h-BN for better device performance, direct growth of large-area graphene/h-BN heterostructures is of great importance. Here we report the direct growth of large-area graphene/h-BN vertical heterostructures by a co-segregation method. By one-step annealing sandwiched growth substrates (Ni(C)/(B, N)-source/Ni) in vacuum, wafer-scale graphene/h-BN films can be directly formed on the metal surface. The as-grown vertically stacked graphene/h-BN structures are demonstrated by various morphology and spectroscopic characterizations. This co-segregation approach opens up a new pathway for large-batch production of graphene/h-BN heterostructures and would also be extended to the synthesis of other van der Waals heterostructures.

Details

ISSN :
20411723
Volume :
6
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....beda1809a1221704d67f52ec98303a14
Full Text :
https://doi.org/10.1038/ncomms7519