Back to Search Start Over

Development and validation of a prediction model for severe respiratory failure in hospitalized patients with SARS-Cov-2 infection: a multicenter cohort study (PREDI-CO study)

Authors :
Ciro Fulgaro
Ioannis Tzimas
Luigi Raumer
Marianna Meschiari
Marianna Menozzi
Gabriella Verucchi
Giada Rossini
Filippo Trapani
Giacomo Fornaro
Michela Semprini
Alessandra Cascavilla
Emanuele Campaci
Maddalena Giannella
Luigia Scudeller
Alessandro Zuccotti
Irid Baxhaku
Lucia Angelelli
Eleonora Zamparini
Annalisa Saracino
Alberto Zuppiroli
Cristina Basso
Elisabetta Pierucci
Agostino Rossi
Giulia Santangelo
Paolo Gaibani
Francesco Cristini
Francesca Volpato
Elisa Fronti
Giovanni Guaraldi
Alberto Sarti
Giorgio Legnani
Mattia Neri
Mauro Codeluppi
Adriana Badeanu
Giulio Virgili
Chiara Pironi
Lorenzo Marconi
Sara K. Tedeschi
Vidak Koprivika
Francesco Barchiesi
Luciano Attard
Matteo Rinaldi
Paola Laghetti
Stefano Antonini
Linda Bussini
Caterina Campoli
Giacomo Urbinati
Marco Merli
Nicholas Roncagli
Agnese Pratelli
Elena Rosselli Del Turco
Silvia Rapuano
Luca Guerra
Stefano Ianniruberto
Francesco Dell'Omo
Michele Bartoletti
Livia Pancaldi
Viola Guardigni
Fabio Tumietto
Giuseppe Sasdelli
Vito Marco Ranieri
Flovia Dauti
Giovanni Fasulo
Eugenia Francalanci
Nicola Dentale
Amalia Sanna Passino
Tommaso Zanaboni
Arianna Rubin
Davide Fiore Bavaro
Idina Zavatta
Massimo Puoti
Letizia Pasinelli
Maria Cristina Leoni
Pierluigi Viale
Oana Vatamanu
Elena Piccini
Renato Pascale
Cristina Mussini
Luca Esposito
Simona Coladonato
Alice Gori
Giulia Tesini
Lorenzo Badia
Mara D'Onofrio
Alberto Licci
Enrico Evangelisti
Guido Maria Liuzzi
Giacinto Pizzilli
Nicolò Rossi
Tommaso Tonetti
Marina Tadolini
Zeno Pasquini
Caterina Vocale
Bartoletti M.
Giannella M.
Scudeller L.
Tedeschi S.
Rinaldi M.
Bussini L.
Fornaro G.
Pascale R.
Pancaldi L.
Pasquini Z.
Trapani F.
Badia L.
Campoli C.
Tadolini M.
Attard L.
Puoti M.
Merli M.
Mussini C.
Menozzi M.
Meschiari M.
Codeluppi M.
Barchiesi F.
Cristini F.
Saracino A.
Licci A.
Rapuano S.
Tonetti T.
Gaibani P.
Ranieri V.M.
Viale P.
Raumer L.
Guerra L.
Tumietto F.
Cascavilla A.
Zamparini E.
Verucchi G.
Coladonato S.
Rubin A.
Ianniruberto S.
Francalanci E.
Volpato F.
Virgili G.
Rossi N.
Del Turco E.R.
Guardigni V.
Fasulo G.
Dentale N.
Fulgaro C.
Legnani G.
Campaci E.
Basso C.
Zuppiroli A.
Passino A.S.
Tesini G.
Angelelli L.
Badeanu A.
Rossi A.
Santangelo G.
Dauti F.
Koprivika V.
Roncagli N.
Tzimas I.
Liuzzi G.M.
Baxhaku I.
Pasinelli L.
Neri M.
Zanaboni T.
Dell'Omo F.
Vatamanu O.
Gori A.
Zavatta I.
Antonini S.
Pironi C.
Piccini E.
Esposito L.
Zuccotti A.
Urbinati G.
Pratelli A.
Sarti A.
Semprini M.
Evangelisti E.
D'Onofrio M.
Sasdelli G.
Pizzilli G.
Pierucci E.
Rossini G.
Vocale C.
Marconi L.
Leoni M.C.
Fronti E.
Guaraldi G.
Bavaro D.
Laghetti P.
Bartoletti, M
Giannella, M
Scudeller, L
Tedeschi, S
Rinaldi, M
Bussini, L
Fornaro, G
Pascale, R
Pancaldi, L
Pasquini, Z
Trapani, F
Badia, L
Campoli, C
Tadolini, M
Attard, L
Puoti, M
Merli, M
Mussini, C
Menozzi, M
Meschiari, M
Codeluppi, M
Barchiesi, F
Cristini, F
Saracino, A
Licci, A
Rapuano, S
Tonetti, T
Gaibani, P
Ranieri, V
Viale, P
Raumer, L
Guerra, L
Tumietto, F
Cascavilla, A
Zamparini, E
Verucchi, G
Coladonato, S
Rubin, A
Ianniruberto, S
Francalanci, E
Volpato, F
Virgili, G
Rossi, N
Del Turco, E
Guardigni, V
Fasulo, G
Dentale, N
Fulgaro, C
Legnani, G
Campaci, E
Basso, C
Zuppiroli, A
Passino, A
Tesini, G
Angelelli, L
Badeanu, A
Rossi, A
Santangelo, G
Dauti, F
Koprivika, V
Roncagli, N
Tzimas, I
Liuzzi, G
Baxhaku, I
Pasinelli, L
Neri, M
Zanaboni, T
Dell'Omo, F
Vatamanu, O
Gori, A
Zavatta, I
Antonini, S
Pironi, C
Piccini, E
Esposito, L
Zuccotti, A
Urbinati, G
Pratelli, A
Sarti, A
Semprini, M
Evangelisti, E
D'Onofrio, M
Sasdelli, G
Pizzilli, G
Pierucci, E
Rossini, G
Vocale, C
Marconi, L
Leoni, M
Fronti, E
Guaraldi, G
Bavaro, D
Laghetti, P
Source :
Clinical Microbiology and Infection
Publication Year :
2020
Publisher :
European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd., 2020.

Abstract

Objectives: We aimed to develop and validate a risk score to predict severe respiratory failure (SRF) among patients hospitalized with coronavirus disease-2019 (COVID-19). Methods: We performed a multicentre cohort study among hospitalized (>24 hours) patients diagnosed with COVID-19 from 22 February to 3 April 2020, at 11 Italian hospitals. Patients were divided into derivation and validation cohorts according to random sorting of hospitals. SRF was assessed from admission to hospital discharge and was defined as: SpO2 30 breaths/min or respiratory distress. Multivariable logistic regression models were built to identify predictors of SRF, β-coefficients were used to develop a risk score. Trial Registration NCT04316949. Results: We analysed 1113 patients (644 derivation, 469 validation cohort). Mean (±SD) age was 65.7 (±15) years, 704 (63.3%) were male. SRF occurred in 189/644 (29%) and 187/469 (40%) patients in the derivation and validation cohorts, respectively. At multivariate analysis, risk factors for SRF in the derivation cohort assessed at hospitalization were age ≥70 years (OR 2.74; 95% CI 1.66–4.50), obesity (OR 4.62; 95% CI 2.78–7.70), body temperature ≥38°C (OR 1.73; 95% CI 1.30–2.29), respiratory rate ≥22 breaths/min (OR 3.75; 95% CI 2.01–7.01), lymphocytes ≤900 cells/mm3 (OR 2.69; 95% CI 1.60–4.51), creatinine ≥1 mg/dL (OR 2.38; 95% CI 1.59–3.56), C-reactive protein ≥10 mg/dL (OR 5.91; 95% CI 4.88–7.17) and lactate dehydrogenase ≥350 IU/L (OR 2.39; 95% CI 1.11–5.11). Assigning points to each variable, an individual risk score (PREDI-CO score) was obtained. Area under the receiver-operator curve was 0.89 (0.86–0.92). At a score of >3, sensitivity, specificity, and positive and negative predictive values were 71.6% (65%–79%), 89.1% (86%–92%), 74% (67%–80%) and 89% (85%–91%), respectively. PREDI-CO score showed similar prognostic ability in the validation cohort: area under the receiver-operator curve 0.85 (0.81–0.88). At a score of >3, sensitivity, specificity, and positive and negative predictive values were 80% (73%–85%), 76% (70%–81%), 69% (60%–74%) and 85% (80%–89%), respectively. Conclusion: PREDI-CO score can be useful to allocate resources and prioritize treatments during the COVID-19 pandemic.

Details

Language :
English
ISSN :
14690691 and 1198743X
Database :
OpenAIRE
Journal :
Clinical Microbiology and Infection
Accession number :
edsair.doi.dedup.....bec3f286a7926131f5da3c8ae6f67eeb