Back to Search Start Over

Electronic structure and photophysics of a supermolecular iron complex having a long MLCT-state lifetime and panchromatic absorption

Authors :
David B. Mitzi
Yusong Bai
Ting Jiang
Peng Zhang
Michael J. Therien
Qiwei Han
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2020
Publisher :
National Academy of Sciences, 2020.

Abstract

Significance The main hurdle that prevents earth-abundant iron-based complexes from replacing environmentally unfriendly and expensive heavy metal [e.g., Ru(II), Os(II), Ir(III)] complexes in solar-energy conversion applications is the typical ultrashort (femtosecond timescale) charge-transfer state lifetime of Fe(II) chromophores. We provide a design roadmap to a generation of efficient iron-based photosensitizers and present an Fe(II) complex archetype, FeNHCPZn, which features a profoundly extended metal-to-ligand charge-transfer (3MLCT) lifetime and a large transition-dipole moment difference between its ground and metal-to-ligand charge-transfer states. This supermolecular design promotes superior visible photon harvesting over classic metal complexes while assuring a triplet excited-state oxidation potential appropriate for charge injection into the conduction bands of common semiconductor electrode materials, highlighting its photosensitizing utility in dye-sensitized solar-cell architectures.<br />Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3MLCT lifetime (160 ps), 3MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry––highlighted by the ability of FeNHCPZn to photoinject charges into a SnO2/FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal–based emitters for solar-energy conversion and photoluminescence applications.

Details

Language :
English
ISSN :
10916490 and 00278424
Volume :
117
Issue :
34
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Accession number :
edsair.doi.dedup.....bea8002ab97c37c444ece290014c32a1