Back to Search
Start Over
Optimality of Matched-Pair Designs in Randomized Controlled Trials
- Source :
- American Economic Review. 112:3911-3940
- Publication Year :
- 2022
- Publisher :
- American Economic Association, 2022.
-
Abstract
- This paper studies the optimality of matched-pair designs in randomized controlled trials (RCTs). Matched-pair designs are examples of stratified randomization, in which the researcher partitions a set of units into strata based on their observed covariates and assign a fraction of units in each stratum to treatment. A matched-pair design is such a procedure with two units per stratum. Despite the prevalence of stratified randomization in RCTs, implementations differ vastly. We provide an econometric framework in which, among all stratified randomization procedures, the optimal one in terms of the mean-squared error of the difference-in-means estimator is a matched-pair design that orders units according to a scalar function of their covariates and matches adjacent units. Our framework captures a leading motivation for stratifying in the sense that it shows that the proposed matched-pair design additionally minimizes the magnitude of the ex-post bias, i.e., the bias of the estimator conditional on realized treatment status. We then consider empirical counterparts to the optimal stratification using data from pilot experiments and provide two different procedures depending on whether the sample size of the pilot is large or small. For each procedure, we develop methods for testing the null hypothesis that the average treatment effect equals a prespecified value. Each test we provide is asymptotically exact in the sense that the limiting rejection probability under the null equals the nominal level. We run an experiment on the Amazon Mechanical Turk using one of the proposed procedures, replicating one of the treatment arms in Dellavigna and Pope (2018), and find the standard error decreases by 29%, so that only half of the sample size is required to attain the same standard error.
- Subjects :
- FOS: Computer and information sciences
History
Economics and Econometrics
Polymers and Plastics
Average treatment effect
Econometrics (econ.EM)
Mathematics - Statistics Theory
Statistics Theory (math.ST)
Industrial and Manufacturing Engineering
law.invention
Methodology (stat.ME)
FOS: Economics and business
Randomized controlled trial
law
Statistics
FOS: Mathematics
Fraction (mathematics)
Business and International Management
Statistics - Methodology
Economics - Econometrics
Mathematics
Estimator
Nominal level
Standard error
Sample size determination
Null hypothesis
Subjects
Details
- ISSN :
- 00028282
- Volume :
- 112
- Database :
- OpenAIRE
- Journal :
- American Economic Review
- Accession number :
- edsair.doi.dedup.....be9ed695fa0e0461ae61a93b53e1f98b