Back to Search Start Over

Sodium diffusion in ionic liquid-based electrolytes for Na-ion batteries: the effect of polarizable force fields

Authors :
Jocasta Avila
Claudio Gerbaldi
Arianna Massaro
Agilio A. H. Padua
Kateryna Goloviznina
Michele Pavone
Ivan Rivalta
Margarida F. Costa Gomes
Laboratoire de Chimie - UMR5182 (LC)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Massaro, A.
Avila, J.
Goloviznina, K.
Rivalta, I.
Gerbaldi, C.
Pavone, M.
Costa Gomes, M. F.
Padua, A. A. H.
Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC)
Dipartimento di Scienze Chimiche [Naples]
Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II
Dipartimento di Chimica Industriale 'Toso Montanari'
Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
Politecnico di Torino = Polytechnic of Turin (Polito)
Massaro A.
Avila J.
Goloviznina K.
Rivalta I.
Gerbaldi C.
Pavone M.
Costa Gomes M.F.
Padua A.A.H.
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
University of Naples Federico II = Università degli studi di Napoli Federico II
ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016)
Source :
Physical Chemistry Chemical Physics, Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2020, 22 (35), pp.20114-20122. ⟨10.1039/d0cp02760j⟩, Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2020, 22, pp.20114-20122. ⟨10.1039/D0CP02760J⟩, Physical Chemistry Chemical Physics, 2020, 22, pp.20114-20122. ⟨10.1039/D0CP02760J⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Understanding the transport of sodium ions in ionic liquids is key to designing novel electrolyte materials for sodium-ion batteries. In this work, we combine molecular dynamics simulation and experiments to study how molecular interactions and local ordering affect relevant physico-chemical properties. Ionic transport and local solvation environments are investigated in electrolytes composed of sodium bis(fluorosulfonyl)imide, (Na[FSI]), in N,N-methylpropylpyrrolidinium bis(fluorosulfonyl)imide, [C3C1pyr][FSI], at different salt concentrations. The electrolyte systems are modelled by means of molecular dynamic simulations using a polarizable force field. We show that including polarization effects explicitly in the molecular simulations is required in order to attain a reliable description of the transport properties of sodium in the [C3C1pyr][FSI] electrolyte. The validation of the computational results upon comparison with experimental data allows us to assess the suitability of polarizable force fields in describing and interpreting the structure and dynamics of the sodium salt-ionic liquid system, which is essential to enable the application of IL-based electrolytes in novel energy-storage technologies.

Details

Language :
English
ISSN :
14639076 and 14639084
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics, Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2020, 22 (35), pp.20114-20122. ⟨10.1039/d0cp02760j⟩, Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2020, 22, pp.20114-20122. ⟨10.1039/D0CP02760J⟩, Physical Chemistry Chemical Physics, 2020, 22, pp.20114-20122. ⟨10.1039/D0CP02760J⟩
Accession number :
edsair.doi.dedup.....be6944d5ed9d99d907340d091248c4ba
Full Text :
https://doi.org/10.1039/d0cp02760j⟩