Back to Search Start Over

Some extensions of the modular method and Fermat equations of signature (13,13,n)

Authors :
Billerey, Nicolas
Chen, Imin
Dembélé, Lassina
Dieulefait, Luis
Freitas, Nuno
Laboratoire de Mathématiques Blaise Pascal (LMBP)
Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
Department of Mathematics Simon Fraser University
University of Luxembourg [Luxembourg]
Departament d'Algebra i Geometria
Facultat de Matematiques, Universitat de Barcelona
Instituto de Ciencias Matemàticas [Madrid] (ICMAT)
Universidad Carlos III de Madrid [Madrid] (UC3M)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Billerey, Nicolas
Source :
Publicacions Matemàtiques, Publicacions Matemàtiques, In press
Publication Year :
2023

Abstract

We provide several extensions of the modular method which were motivated by the problem of completing previous work to prove that, for any integer $n \geq 2$, the equation \[ x^{13} + y^{13} = 3 z^n \] has no non-trivial solutions. In particular, we present four elimination techniques which are based on: (1) establishing reducibility of certain residual Galois representations over a totally real field; (2) generalizing image of inertia arguments to the setting of abelian surfaces; (3) establishing congruences of Hilbert modular forms without the use of often impractical Sturm bounds; and (4) a unit sieve argument which combines information from classical descent and the modular method. The extensions are of broader applicability and provide further evidence that it is possible to obtain a complete resolution of a family of generalized Fermat equations by remaining within the framework of the modular method. As a further illustration of this, we complete a theorem of Anni-Siksek to show that, for $\ell, m\ge 5$, the only solutions to the equation $x^{2\ell} + y^{2m} = z^{13}$ are the trivial ones.<br />Several modifications after the referees' comments. To appear in Publicacions Matem\`atiques

Details

Language :
English
Database :
OpenAIRE
Journal :
Publicacions Matemàtiques, Publicacions Matemàtiques, In press
Accession number :
edsair.doi.dedup.....be6497a274e66e335cfab28b0d01304f