Back to Search Start Over

Fast tree aggregation for consensus hierarchical clustering

Authors :
Florence Jaffrezic
Julien Chiquet
Audrey Hulot
Guillem Rigaill
Génétique Animale et Biologie Intégrative (GABI)
Université Paris-Saclay-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Mathématiques et Informatique Appliquées (MIA-Paris)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-AgroParisTech-Université Paris-Saclay
Infection et inflammation (2I)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403))
Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Laboratoire de Mathématiques et Modélisation d'Evry (LaMME)
Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
ATIGE grant from Genopole
ANR-10-LABX-0040,SPS,Saclay Plant Sciences(2010)
AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Mathématiques et Informatique Appliquées (MIA Paris-Saclay)
Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Rigaill, Guillem
Saclay Plant Sciences - - SPS2010 - ANR-10-LABX-0040 - LABX - VALID
Source :
BMC Bioinformatics, BMC Bioinformatics, BioMed Central, 2020, 21 (1), ⟨10.1186/s12859-020-3453-6⟩, BMC Bioinformatics, 2020, 21 (1), ⟨10.1186/s12859-020-3453-6⟩, BMC Bioinformatics, Vol 21, Iss 1, Pp 1-12 (2020)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Background In unsupervised learning and clustering, data integration from different sources and types is a difficult question discussed in several research areas. For instance in omics analysis, dozen of clustering methods have been developed in the past decade. When a single source of data is at play, hierarchical clustering (HC) is extremely popular, as a tree structure is highly interpretable and arguably more informative than just a partition of the data. However, applying blindly HC to multiple sources of data raises computational and interpretation issues. Results We propose mergeTrees, a method that aggregates a set of trees with the same leaves to create a consensus tree. In our consensus tree, a cluster at height h contains the individuals that are in the same cluster for all the trees at height h. The method is exact and proven to be $\mathcal {O}(nq\log (n))$O(nqlog(n)), n being the individuals and q being the number of trees to aggregate. Our implementation is extremely effective on simulations, allowing us to process many large trees at a time. We also rely on mergeTrees to perform the cluster analysis of two real -omics data sets, introducing a spectral variant as an efficient and robust by-product. Conclusions Our tree aggregation method can be used in conjunction with hierarchical clustering to perform efficient cluster analysis. This approach was found to be robust to the absence of clustering information in some of the data sets as well as an increased variability within true clusters. The method is implemented in / and available as an package named , which makes it easy to integrate in existing or new pipelines in several research areas.

Details

Language :
English
ISSN :
14712105
Database :
OpenAIRE
Journal :
BMC Bioinformatics, BMC Bioinformatics, BioMed Central, 2020, 21 (1), ⟨10.1186/s12859-020-3453-6⟩, BMC Bioinformatics, 2020, 21 (1), ⟨10.1186/s12859-020-3453-6⟩, BMC Bioinformatics, Vol 21, Iss 1, Pp 1-12 (2020)
Accession number :
edsair.doi.dedup.....be38f0ea24808dd5153cc1bcb252f1ac
Full Text :
https://doi.org/10.1186/s12859-020-3453-6⟩