Back to Search
Start Over
Low-crystallinity to highly amorphous copolyesters with high glass transition temperatures based on rigid carbohydrate-derived building blocks
- Source :
- Polymer International, 70(5), 536-545. Wiley
- Publication Year :
- 2021
- Publisher :
- Wiley, 2021.
-
Abstract
- The current trend of developing novel biobased polymeric materials is focused more on utilizing the unique structural/physical properties of renewable building blocks towards niche market applications. In this work, with the aim of developing low-crystallinity to amorphous polyesters with enhanced thermal properties, a series of copolyesters based on rigid and structurally asymmetric carbohydrate-derived building blocks, namely furan-2,5-dicarboxylic acid and isosorbide, and 1,4-butanediol were successfully synthesized using melt polycondensation. The copolyesters were obtained with varied chemical compositions and rather high molecular weights (Mn = 24 000–31 000 g mol−1) and intrinsic viscosities ([η] = 0.56–0.72 dL g−1). Incorporation of both building blocks significantly enhances the glass transition temperatures (Tg = 38–107 °C) of polyesters, and also efficiently inhibits the crystallization of the copolyesters. A low content of isosorbide (ca 10 mol%) leads to complete transition of the homopolyester to nearly fully amorphous materials. Detailed characterizations of the chemical structures and thermal properties of the synthesized copolyesters were conducted using various analytical techniques. In addition, hydrolytic and enzymatic degradations of the copolymers in the presence of porcine pancreatic lipase and cutinase were also investigated.
- Subjects :
- Isosorbide
Materials science
Polymers and Plastics
isosorbide
Organic Chemistry
carbohydrates
2,5-furandicarboxylic acid
amorphous polyesters
Carbohydrate
Biodegradable polymer
Amorphous solid
biobased monomers
chemistry.chemical_compound
Crystallinity
5-furandicarboxylic acid
Chemical engineering
chemistry
biodegradable polymers
Materials Chemistry
medicine
2,5-Furandicarboxylic acid
Glass transition
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 09598103
- Volume :
- 70
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Polymer International
- Accession number :
- edsair.doi.dedup.....bddfe846b0ee1e6f7161cfad195f790c