Back to Search Start Over

Low-crystallinity to highly amorphous copolyesters with high glass transition temperatures based on rigid carbohydrate-derived building blocks

Authors :
Lin Yiming
Wu Jing
Chen Yong
CE Cor Koning
Huaping Wang
Jingying Chen
Product Technology
Source :
Polymer International, 70(5), 536-545. Wiley
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

The current trend of developing novel biobased polymeric materials is focused more on utilizing the unique structural/physical properties of renewable building blocks towards niche market applications. In this work, with the aim of developing low-crystallinity to amorphous polyesters with enhanced thermal properties, a series of copolyesters based on rigid and structurally asymmetric carbohydrate-derived building blocks, namely furan-2,5-dicarboxylic acid and isosorbide, and 1,4-butanediol were successfully synthesized using melt polycondensation. The copolyesters were obtained with varied chemical compositions and rather high molecular weights (Mn = 24 000–31 000 g mol−1) and intrinsic viscosities ([η] = 0.56–0.72 dL g−1). Incorporation of both building blocks significantly enhances the glass transition temperatures (Tg = 38–107 °C) of polyesters, and also efficiently inhibits the crystallization of the copolyesters. A low content of isosorbide (ca 10 mol%) leads to complete transition of the homopolyester to nearly fully amorphous materials. Detailed characterizations of the chemical structures and thermal properties of the synthesized copolyesters were conducted using various analytical techniques. In addition, hydrolytic and enzymatic degradations of the copolymers in the presence of porcine pancreatic lipase and cutinase were also investigated.

Details

Language :
English
ISSN :
09598103
Volume :
70
Issue :
5
Database :
OpenAIRE
Journal :
Polymer International
Accession number :
edsair.doi.dedup.....bddfe846b0ee1e6f7161cfad195f790c