Back to Search
Start Over
Spike train analysis in a digital neuromorphic system of cutaneous mechanoreceptor
- Source :
- Neurocomputing. 379:343-355
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- In this research, we develop a neuromorphic system to study neural signaling at the level of first order tactile afferents which are slowly adapting type I (SA1) and rapidly adapting type I (RA1) mechanoreceptors. Considering, the linearized Izhikevich model, two digital circuits are developed for both afferents and are executed on the field programmable gate array (FPGA). After implementation of the digital circuits, we investigate how much information is encoded by this hardware-based neuromorphic system. Indeed, the artificial spiking sequences are evoked by applying different force profiles to the sensor connected to the FPGA. Next, the obtained neural responses are classified based on the two fundamental neural coding for brain information processing: spike timing and rate coding. Considering temporal coding, k-nearest neighbors (kNN), support vector machine (SVM) and Decision Tree algorithms are used for forces recognition using acquired artificial spike patterns. The results of classification show that the digital RA1 is susceptible to signal variations, while the digital SA1, on the other hand, is sensitive to the ramp and hold inputs. Furthermore, these responses are better distinguishable to different stimuli when both artificial SA1 and RA1 afferents are regarded. These results, which are functionally compatible with biological observations, yield the promise for fabrication and development of new tactile sensing modules to be employed in bio-robotic and prosthetic applications.
- Subjects :
- 0209 industrial biotechnology
Computer science
Cognitive Neuroscience
Spike train
Neural coding
02 engineering and technology
Signal
020901 industrial engineering & automation
Artificial Intelligence
Hardware implementation
Spiking model
Tactile sensing
0202 electrical engineering, electronic engineering, information engineering
Field-programmable gate array
Digital electronics
business.industry
Pattern recognition
Computer Science Applications
Support vector machine
Neuromorphic engineering
020201 artificial intelligence & image processing
Spike (software development)
Artificial intelligence
business
Subjects
Details
- ISSN :
- 09252312
- Volume :
- 379
- Database :
- OpenAIRE
- Journal :
- Neurocomputing
- Accession number :
- edsair.doi.dedup.....bdb3c04a0ac6e6f4ee177e914346226e
- Full Text :
- https://doi.org/10.1016/j.neucom.2019.09.043