Back to Search
Start Over
Comparison of Brain Temperature Distribution in Mathematical and Solid Models of Head Thermal Characteristics
- Source :
- IEEJ Transactions on Electronics, Information and Systems. 133:1820-1827
- Publication Year :
- 2013
- Publisher :
- Institute of Electrical Engineers of Japan (IEE Japan), 2013.
-
Abstract
- SUMMARY Accurate temperature control of brain tissue during hypothermia treatment is necessary in order to prevent secondary brain damage and to avoid various side effects. Thus, the visualization of the intracerebral temperature distribution in hypothermia treatment was studied at the fundamental level. For this purpose a virtual reality technology was used to create a mathematical model that reflects metabolic heat production and Fourier heat conduction in a brain with the necessary parameters based on various clinical models. In the present study, an experimental system was developed to examine a mathematical simulation of the blood flow in a human head by using a solid brain model constructed using silicon rubber in the shape of a brain based on MRI data, taking into account the metabolic heat given off by three film heaters and including six sensors for the measurement of regional brain temperature. The mathematical simulation describes the internal temperature distribution in a brain with a similar structure to the brain solid model. The results of mathematical simulations and experiments using the brain solid model were quite consistent in the steady state, including control of regional temperature. This allows for the performance of heat conduction experiments under conditions similar to those of a living body, in which the internal temperature is clinically difficult to observe. Thus, the mathematical simulation is confirmed to be useful together with experiments using the solid model for the study of future brain hypothermia treatment. Cā 2015 Wiley Periodicals, Inc. Electr Eng Jpn, 193(2): 58ā68, 2015; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.22642
- Subjects :
- Engineering
Materials science
Steady state
Temperature control
Human head
business.industry
Energy Engineering and Power Technology
Brain damage
Thermal conduction
Visualization
Experimental system
medicine
Head (vessel)
Electrical and Electronic Engineering
medicine.symptom
business
Biological system
Simulation
Subjects
Details
- ISSN :
- 13488155 and 03854221
- Volume :
- 133
- Database :
- OpenAIRE
- Journal :
- IEEJ Transactions on Electronics, Information and Systems
- Accession number :
- edsair.doi.dedup.....bdae46fff631340769bc69864d1ab455
- Full Text :
- https://doi.org/10.1541/ieejeiss.133.1820