Back to Search Start Over

DEWE: A novel tool for executing differential expression RNA-Seq workflows in biomedical research

Authors :
Aitor Blanco-Míguez
Florentino Fdez-Riverola
Anália Lourenço
Hugo López-Fernández
Borja Sánchez
Ministerio de Economía y Competitividad (España)
Asociación Española Contra el Cáncer
Xunta de Galicia
Foundation for Science and Technology
Principado de Asturias
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
Blanco-Míguez, Aitor [0000-0001-7386-5572]
Fdez-Riverola, Florentino [0000-0002-3943-8013]
Sánchez García, Borja [0000-0003-1408-8018]
Lourenço, Anália [0000-0001-8401-5362]
Blanco-Míguez, Aitor
Fdez-Riverola, Florentino
Sánchez García, Borja
Lourenço, Anália
Universidade do Minho
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2019
Publisher :
Elsevier, 2019.

Abstract

[Background] Transcriptomics profiling aims to identify and quantify all transcripts present within a cell type or tissue at a particular state, and thus provide information on the genes expressed in specific experimental settings, differentiation or disease conditions. RNA-Seq technology is becoming the standard approach for such studies, but available analysis tools are often hard to install, configure and use by users without advanced bioinformatics skills. [Methods] Within reason, DEWE aims to make RNA-Seq analysis as easy for non-proficient users as for experienced bioinformaticians. DEWE supports two well-established and widely used differential expression analysis workflows: using Bowtie2 or HISAT2 for sequence alignment; and, both applying StringTie for quantification, and Ballgown and edgeR for differential expression analysis. Also, it enables the tailored execution of individual tools as well as helps with the management and visualisation of differential expression results. [Results] DEWE provides a user-friendly interface designed to reduce the learning curve of less knowledgeable users while enabling analysis customisation and software extension by advanced users. Docker technology helps overcome installation and configuration hurdles. In addition, DEWE produces high quality and publication-ready outputs in the form of tab-delimited files and figures, as well as helps researchers with further analyses, such as pathway enrichment analysis. [Conclusions] The abilities of DEWE are exemplified here by practical application to a comparative analysis of monocytes and monocyte-derived dendritic cells, a study of clinical relevance. DEWE installers and documentation are freely available at https://www.sing-group.org/dewe.<br />This work was supported by the Spanish “Programa Estatal de Investigación, Desarrollo e Inovación Orientada a los Retos de la Sociedad” (grant AGL2013-44039R); the Asociación Española Contra el Cancer (“Obtención de péptidos bioactivos contra el Cáncer Colo-Rectal a partir de secuencias genéticas de microbiomas intestinales”, grant PS-2016); the Consellería de Educación, Universidades e Formación Profesional (Xunta de Galicia) under the scope of the strategic funding of ED431C2018/55-GRC Competitive Reference Group; the Portuguese Foundation for Science and Technology under the scope of the strategic funding of UID/BIO/04469/2019 unit; and the Asturias Regional Plan I + D + i for research groups (FYCYT-IDI/2018/000236). H. López-Fernández is supported by a post-doctoral fellowship from Xunta de Galicia (ED481B 2016/068-0).

Details

Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Accession number :
edsair.doi.dedup.....bd6f4fbaab5ce23c07f524145fc0622c